【題目】如圖所示,A、B兩城市相距100km.現(xiàn)計(jì)劃在這兩座城市間修筑一條高速公路(即線段AB),經(jīng)測(cè)量,森林保護(hù)中心P在A城市的北偏東30°和B城市的北偏西45°的方向上.已知森林保護(hù)區(qū)的范圍在以P點(diǎn)為圓心,50km為半徑的圓形區(qū)域內(nèi).請(qǐng)問(wèn)計(jì)劃修筑的這條高速公路會(huì)不會(huì)穿越保護(hù)區(qū).為什么?(參考數(shù)據(jù):

【答案】不會(huì)穿越保護(hù)區(qū)

【解析】

過(guò)點(diǎn)PPCAB,C是垂足.ACBC就都可以根據(jù)三角函數(shù)用PC表示出來(lái).根據(jù)AB的長(zhǎng),得到一個(gè)關(guān)于PC的方程,解出PC的長(zhǎng).從而判斷出這條高速公路會(huì)不會(huì)穿越保護(hù)區(qū).

解:

不會(huì)穿越保護(hù)區(qū)

過(guò)點(diǎn)PPCAB,C是垂足。

AC+BC=AB

所以計(jì)劃修的這條路不會(huì)穿越保護(hù)區(qū)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有公路l1同側(cè)、l2異側(cè)的兩個(gè)城鎮(zhèn)AB,如下圖.電信部門要修建一座信號(hào)發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)A,B的距離必須相等,到兩條公路l1l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請(qǐng)用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫出畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,請(qǐng)按要求畫圖和填空:

1)在網(wǎng)格中畫出ABC向下平移5個(gè)單位得到的A1B1C1;

2)在網(wǎng)格中畫出A1B1C1關(guān)于直線l對(duì)稱的A2B2C2;

3)在網(wǎng)格中畫出將ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90度得到的AB3C3;

4)在圖中探究并求得ABC的面積= (直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,以AB為直徑作半圓⊙OAC于點(diǎn)D,點(diǎn)EBC的中點(diǎn),連接DE.

(1)求證:DE是半圓⊙O的切線;

(2)若∠BAC=30°,DE=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D AB的中點(diǎn).

(1)如果點(diǎn) P 在線段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在線段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動(dòng).

若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,經(jīng)過(guò) 1 秒后,△BPD △CQP 是否全等,請(qǐng)說(shuō)明理由;

若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD △CQP 全等?

(2)若點(diǎn) Q 以②中的運(yùn)動(dòng)速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來(lái)的運(yùn)動(dòng)速度從點(diǎn) B 同時(shí)出發(fā),都逆時(shí)針沿△ABC 三邊運(yùn)動(dòng),則經(jīng)過(guò) 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AC平分DAB,ADC=ACB=90°,E為AB的中點(diǎn),

(1)求證:AC2=ABAD;

(2)求證:CEAD;

(3)若AD=4,AB=6,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC、△ADC、△AMN均為等邊三角形,AM>AB,AMDC交于點(diǎn)E,ANBC交于點(diǎn)F.

(1)試說(shuō)明:△ABF≌△ACE;

(2)猜測(cè)△AEF的形狀,并說(shuō)明你的結(jié)論;

(3)請(qǐng)直接指出當(dāng)F點(diǎn)在BC何處時(shí),AC⊥EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,∠ACB=90°,AC=BC,AE BC 邊的中線,過(guò)點(diǎn)C CF⊥AE,垂足為點(diǎn) F,過(guò)點(diǎn) B BD⊥BC CF 的延長(zhǎng)線于點(diǎn) D.

(1)試證明:AE=CD;

(2)若 AC=12cm,求線段 BD 的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】沿圖1長(zhǎng)方形中的虛線平均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.

(1)2中的陰影部分的面積為 .

(2)觀察圖2,請(qǐng)你寫出代數(shù)式(m+n)2(m-n)2、mn之間的等量關(guān)系式.

(3)根據(jù)你得到的關(guān)系式解答下列問(wèn)題:若x+y=-6,xy=5,xy= .

(4)實(shí)際上有許多代數(shù)恒等式可以用圖形的面積來(lái)表示.如圖3,它表示了(2m+n)(m+n)=2m2+3mn+n2.試畫出一個(gè)幾何圖形,使它的面積能表示(m+n)(m+3n)=m2+4mn+3n2.

查看答案和解析>>

同步練習(xí)冊(cè)答案