【題目】如圖,已知AB的直徑,點PBA的延長線上,PD于點D,過點B,交PD的延長線于點C,連接AD并延長,交BE于點E

(Ⅰ)求證:AB=BE;

(Ⅱ)連結(jié)OC,如果PD=2,∠ABC=60°,求OC的長.

【答案】()證明見解析;().

【解析】

()連接OD,由PD O于點D,得到ODPD,由于BEPC,得到ODBE,得出∠ADO=E,根據(jù)等腰三角形的性質(zhì)和等量代換可得結(jié)論;()由平行線的性質(zhì)可得∠DOP=60°,利用三角函數(shù)可求出OD、OP、PC的長,即可得CD的長,利用勾股定理求出OC的長即可.

()連接,

PD于點,

,

,

,

,

,

(),

,

OD=2

,

,

∴DC=PC-PD=

中,,

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:若拋物線的頂點與軸的兩個交點構(gòu)成的三角形是直角三角形,則這種拋物線就稱為美麗拋物線.如圖,直線經(jīng)過點一組拋物線的頂點,為正整數(shù)),依次是直線上的點,這組拋物線與軸正半軸的交點依次是:,,為正整數(shù)).若,當為( )時,這組拋物線中存在美麗拋物線.

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)

拋物線的開口向____ 、對稱軸為直線_ _、頂點坐標__ _;

___ _時,函數(shù)有最___ 值,是__ _

_ _ ______時,的增大而增大;當____ __時,的增大而減;

該函數(shù)圖象可由的圖象經(jīng)過怎樣的平移得到的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片中,,,將沿折疊,使點落在點處,于點,則的長等于(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為( 。

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若平面直角坐標系內(nèi)的點滿足橫、縱坐標都為整數(shù),則把點叫做 “整點”.例如:、都是“整點”,拋物線)與軸交于兩點,若該拋物線在之間的部分與線段所圍成的區(qū)域(包括邊界)恰有七個整點,則的取值范圍是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,的弦,過點的切線延長線于點

(Ⅰ)若,求的度數(shù);

(Ⅱ)若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為,點軸的正半軸上,將線段繞點順時針旋轉(zhuǎn)90°得到,過點軸的垂線,垂足為,連接軸于點

1)當點在第三象限時,求實數(shù)的取值范圍;

2)在(1)的條件下,設(shè),當取得最大值時,求圖象經(jīng)過兩點的二次函數(shù)的解析式;

3)在(2)的條件下,將直線向上平移個單位后與二次函數(shù)的圖象交點的橫坐標為,若,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組在全校范圍內(nèi)隨機抽取了50名同學進行“舌尖上的宜興﹣我最喜愛的宜興小吃”調(diào)查活動,將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖.

請根據(jù)所給信息解答以下問題

(1)請補全條形統(tǒng)計圖;

(2)若全校有1000名同學,請估計全校同學中最喜愛“筍干”的同學有多少人?

(3)在一個不透明的口袋中有4個元全相同的小球,把它們分別標號為四種小吃的序號A,B,C,D,隨機地把四個小球分成兩組,每組兩個球,請用列表或畫樹狀圖的方法,求出A,B兩球分在同一組的概率.

查看答案和解析>>

同步練習冊答案