【題目】將邊長(zhǎng)為2的正方形OABC如圖放置,O為原點(diǎn).若∠α=15°,則點(diǎn)B的坐標(biāo)為 .
【答案】
【解析】解:連接OB,過(guò)B作BE⊥x軸于E,則∠BEO=90°,
∵四邊形OABC是正方形,
∴AB=OA=2,∠A=90°,∠BOA=45°,
由勾股定理得:OB= =2 ,
∵∠α=15°,∠BOA=45°,
∴∠BOE=45°+15°=60°,
在Rt△BOE中,BE=OB×sin60°=2 × = ,OE=OB×cos60°= ,
∴B的坐標(biāo)為(﹣ , ).
故答案為:
連接OB,過(guò)B作BE⊥x軸于E,則∠BEO=90°,根據(jù)正方形性質(zhì)得出AB=OA=2,∠A=90°,∠BOA=45°,根據(jù)勾股定理求出OB,解直角三角形求出OE、BE,即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列解答中,填寫(xiě)適當(dāng)?shù)睦碛苫驍?shù)學(xué)式:
(1)∵ ∠ABD=∠CDB, ( 已知 )
∴ ∥ . ( )
(2)∵ ∠ADC+∠DCB=180°, ( 已知 )
∴ ∥ . ( )
(3)∵ AD∥BE, ( 已知 )
∴ ∠DCE=∠ . ( )
(4)∵ ∥ , ( 已知 )
∴ ∠BAE=∠CFE. ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),以P(1,1)為圓心的⊙P與x軸,y軸分別相切于點(diǎn)M和點(diǎn)N,點(diǎn)F從點(diǎn)M出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),連接PF,過(guò)點(diǎn)P作PE⊥PF交y軸于點(diǎn)E,設(shè)點(diǎn)F運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)若點(diǎn)E在y軸的負(fù)半軸上(如圖所示),求證:PE=PF;
(2)在點(diǎn)F運(yùn)動(dòng)過(guò)程中,設(shè)OE=a,OF=b,試用含a的代數(shù)式表示b;
(3)作點(diǎn)F關(guān)于點(diǎn)M的對(duì)稱點(diǎn)F′,經(jīng)過(guò)M、E和F′三點(diǎn)的拋物線的對(duì)稱軸交x軸于點(diǎn)Q,連接QE.在點(diǎn)F運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使得以點(diǎn)Q、O、E為頂點(diǎn)的三角形與以點(diǎn)P、M、F為頂點(diǎn)的三角形相似?若存在,請(qǐng)直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)布袋中裝有只有顏色不同的a(a>12)個(gè)球,分別是2個(gè)白球,4個(gè)黑球,6個(gè)紅球和b個(gè)黃球,從中任意摸出一個(gè)球,把摸出白球,黑球,紅球的概率繪制成統(tǒng)計(jì)圖(未繪制完整).請(qǐng)補(bǔ)全該統(tǒng)計(jì)圖并求出 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,設(shè)x軸為直線l,函數(shù)y=﹣ x,y= x的圖象分別是直線l1 , l2 , 圓P(以點(diǎn)P為圓心,1為半徑)與直線l,l1 , l2中的兩條相切.例如( ,1)是其中一個(gè)圓P的圓心坐標(biāo).
(1)寫(xiě)出其余滿足條件的圓P的圓心坐標(biāo);
(2)在圖中標(biāo)出所有圓心,并用線段依次連接各圓心,求所得幾何圖形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)B,不含端點(diǎn)C),連接AD,過(guò)點(diǎn)C作CE⊥AD于E,連接BE,在點(diǎn)D移動(dòng)的過(guò)程中,BE的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,圓規(guī)兩腳形成的角α稱為圓規(guī)的張角.一個(gè)圓規(guī)兩腳均為12cm,最大張角150°,你能否畫(huà)出一個(gè)半徑為20cm的圓?請(qǐng)借助圖2說(shuō)明理由.(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題
(1)計(jì)算: +( -1)+( )0
(2)化簡(jiǎn):(1+a)(1﹣a)+a(a﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣ x+4與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)C從點(diǎn)B出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度向點(diǎn)A勻速運(yùn)動(dòng);同時(shí)點(diǎn)D從點(diǎn)O出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度向點(diǎn)B勻速運(yùn)動(dòng),到達(dá)終點(diǎn)后運(yùn)動(dòng)立即停止.連接CD,取CD的中點(diǎn)E,過(guò)點(diǎn)E作EF⊥CD,與折線DO﹣OA﹣AC交于點(diǎn)F,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)點(diǎn)C的坐標(biāo)為(用含t的代數(shù)式表示);
(2)求證:點(diǎn)E到x軸的距離為定值;
(3)連接DF、CF,當(dāng)△CDF是以CD為斜邊的等腰直角三角形時(shí),求CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com