【題目】某水果店在兩周內(nèi),將標(biāo)價(jià)為10元/斤的某種水果,經(jīng)過(guò)兩次降價(jià)后的價(jià)格為8.1元/斤,并且兩次降價(jià)的百分率相同.
(1)求該種水果每次降價(jià)的百分率;
(2)從第一次降價(jià)的第1天算起,第x天(x為整數(shù))的售價(jià)、銷量及儲(chǔ)存和損耗費(fèi)用的相關(guān)信息如表所示.已知該種水果的進(jìn)價(jià)為4.1元/斤,設(shè)銷售該水果第x(天)的利潤(rùn)為y(元),求y與x(1≤x<15)之間的函數(shù)關(guān)系式,并求出第幾天時(shí)銷售利潤(rùn)最大?
(3)在(2)的條件下,若要使第15天的利潤(rùn)比(2)中最大利潤(rùn)最多少127.5元,則第15天在第14天的價(jià)格基礎(chǔ)上最多可降多少元?
【答案】(1)10%;(2),第10天時(shí)銷售利潤(rùn)最大;(3)0.5.
【解析】試題分析:(1)設(shè)這個(gè)百分率是x,根據(jù)某商品原價(jià)為10元,由于各種原因連續(xù)兩次降價(jià),降價(jià)后的價(jià)格為8.1元,可列方程求解;
(2)根據(jù)兩個(gè)取值先計(jì)算:當(dāng)1≤x<9時(shí)和9≤x<15時(shí)銷售單價(jià),由利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷量﹣費(fèi)用列函數(shù)關(guān)系式,并根據(jù)增減性求最大值,作對(duì)比;
(3)設(shè)第15天在第14天的價(jià)格基礎(chǔ)上最多可降a元,根據(jù)第15天的利潤(rùn)比(2)中最大利潤(rùn)最多少127.5元,列不等式可得結(jié)論.
試題解析:解:(1)設(shè)該種水果每次降價(jià)的百分率是x,10(1﹣x)2=8.1,x=10%或x=190%(舍去).
答:該種水果每次降價(jià)的百分率是10%;
(2)當(dāng)1≤x<9時(shí),第1次降價(jià)后的價(jià)格:10×(1﹣10%)=9,∴y=(9﹣4.1)(80﹣3x)﹣(40+3x)=﹣17.7x+352,∵﹣17.7<0,∴y隨x的增大而減小,∴當(dāng)x=1時(shí),y有最大值,y大=﹣17.7×1+352=334.3(元);
當(dāng)9≤x<15時(shí),第2次降價(jià)后的價(jià)格:8.1元,∴y=(8.1﹣4.1)(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,∵﹣3<0,∴當(dāng)9≤x≤10時(shí),y隨x的增大而增大,當(dāng)10<x<15時(shí),y隨x的增大而減小,∴當(dāng)x=10時(shí),y有最大值,y大=380(元).
綜上所述,y與x(1≤x<15)之間的函數(shù)關(guān)系式為: ,第10天時(shí)銷售利潤(rùn)最大;
(3)設(shè)第15天在第14天的價(jià)格基礎(chǔ)上最多可降a元,由題意得:380﹣127.5≤(4﹣a)(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a)﹣115,a≤0.5.
答:第15天在第14天的價(jià)格基礎(chǔ)上最多可降0.5元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=(<600),D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,過(guò)點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE、BE、DF
(1)求證:BE=CD
(2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)是(a,0),點(diǎn)B的坐標(biāo)是(b,0),其中a,b滿足.
(1)填空:a=______,b=_______;
(2)在軸負(fù)半軸上有一點(diǎn)M(0,m),三角形ABM的面積為4.
①求m的值;
②將線段AM沿x軸正方向平移,使得A的對(duì)應(yīng)點(diǎn)為B,M的對(duì)應(yīng)點(diǎn)為N. 若點(diǎn)P為線段AB上的任意一點(diǎn)(不與A,B重合),試寫出∠MPN,∠PMA,∠PNB之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在CB的延長(zhǎng)線上,點(diǎn)F在DE的延長(zhǎng)線上,連接AF,分別與BD、CE交于點(diǎn)G、H。已知∠1=52°,∠2=128°。
(1)求證:BD∥CE;
(2)若∠A=∠F,試判斷∠C與∠D的數(shù)量關(guān)系,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, , 與成正比例, 與成反比例,并且當(dāng)時(shí), ,當(dāng)時(shí), .
()求關(guān)于的函數(shù)關(guān)系式.
()當(dāng)時(shí),求的值.
【答案】();(), .
【解析】分析:(1)首先根據(jù)與x成正比例, 與x成反比例,且當(dāng)x=1時(shí),y=4;當(dāng)x=2時(shí),y=5,求出 和與x的關(guān)系式,進(jìn)而求出y與x的關(guān)系式,(2)根據(jù)(1)問(wèn)求出的y與x之間的關(guān)系式,令y=0,即可求出x的值.
本題解析:
()設(shè), ,
則,
∵當(dāng)時(shí), ,當(dāng)時(shí), ,
∴
解得, ,
∴關(guān)于的函數(shù)關(guān)系式為.
()把代入得,
,
解得: , .
點(diǎn)睛:本題考查了用待定系數(shù)法求反比例函數(shù)的解析式:(1)設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=kx(k為常數(shù),k≠0);(2)把已知條件(自變量與對(duì)應(yīng)值)代入解析式,得到待定系數(shù)的方程;(3)解方程,求出待定系數(shù);(4)寫出解析式.
【題型】解答題
【結(jié)束】
24
【題目】如圖,菱形的對(duì)角線、相交于點(diǎn),過(guò)點(diǎn)作且,連接、,連接交于點(diǎn).
(1)求證:;
(2)若菱形的邊長(zhǎng)為2, .求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為組織代表隊(duì)參加市“拜炎帝、誦經(jīng)典”吟誦大賽,初賽后對(duì)選手成績(jī)進(jìn)行了整理,分成5個(gè)小組(x表示成績(jī),單位:分),A組:75≤x<80;B組:80≤x<85;C組:85≤x<90;D組:90≤x<95;E組:95≤x<100.并繪制出如圖兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)參加初賽的選手共有 名,請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(2)扇形統(tǒng)計(jì)圖中,C組對(duì)應(yīng)的圓心角是多少度?E組人數(shù)占參賽選手的百分比是多少?
(3)學(xué)校準(zhǔn)備組成8人的代表隊(duì)參加市級(jí)決賽,E組6名選手直接進(jìn)入代表隊(duì),現(xiàn)要從D組中的兩名男生和兩名女生中,隨機(jī)選取兩名選手進(jìn)入代表隊(duì),請(qǐng)用列表或畫樹(shù)狀圖的方法,求恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,完成下列各題:平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系。
(1)如圖1,若,點(diǎn)P在AB,CD之間,求證:∠BPD=∠B+∠D;
(2)在圖1中,將直線AB繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖2,請(qǐng)寫出,∠B,,之間的數(shù)量關(guān)系并說(shuō)明理由;
(3)利用(2)的結(jié)論,求圖3中+∠G=n×90°,則n=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)積極響應(yīng)政府“創(chuàng)新發(fā)展”的號(hào)召,研發(fā)了一種新產(chǎn)品.已知研發(fā)、生產(chǎn)這種產(chǎn)品的成本為30元/件,且年銷售量y(萬(wàn)件)關(guān)于售價(jià)x(元/件)的函數(shù)解析式為:
(1)若企業(yè)銷售該產(chǎn)品獲得的利潤(rùn)為W(萬(wàn)元),請(qǐng)直接寫出年利潤(rùn)W(萬(wàn)元)關(guān)于售價(jià)x(元/件)的函數(shù)解析式;
(2)當(dāng)該產(chǎn)品的售價(jià)x(元/件)為多少時(shí),企業(yè)銷售該產(chǎn)品獲得的年利潤(rùn)最大?最大年利潤(rùn)是多少?
(3)若企業(yè)銷售該產(chǎn)品的年利潤(rùn)不少于750萬(wàn)元,試確定該產(chǎn)品的售價(jià)x(元/件)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是正方形,點(diǎn)E、F分別是BC、CD邊的中點(diǎn),連結(jié)AE、BF交于點(diǎn)P,連結(jié)DP.
(1)求證:AE⊥BF.
(2)求證:PD=AB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com