【題目】如圖1,點(diǎn)P在正方形ABCD的對(duì)角線AC上,正方形的邊長(zhǎng)是a,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點(diǎn)M、N.
(1)操作發(fā)現(xiàn):如圖2,固定點(diǎn)P,使△PEF繞點(diǎn)P旋轉(zhuǎn),當(dāng)PM⊥BC時(shí),四邊形PMCN是正方形.填空:①當(dāng)AP=2PC時(shí),四邊形PMCN的邊長(zhǎng)是_________;②當(dāng)AP=nPC時(shí)(n是正實(shí)數(shù)),四邊形PMCN的面積是__________.
(2)猜想論證
如圖3,改變四邊形ABCD的形狀為矩形,AB=a,BC=b,點(diǎn)P在矩形ABCD的對(duì)角線AC上,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點(diǎn)M、N,固定點(diǎn)P,使△PEF繞點(diǎn)P旋轉(zhuǎn),則=_______.
(3)拓展探究
如圖4,當(dāng)四邊形ABCD滿足條件:∠B+∠D=180°,∠EPF=∠BAD時(shí),點(diǎn)P在AC上,PE、PF分別交BC,CD于M、N點(diǎn),固定P點(diǎn),使△PEF繞點(diǎn)P旋轉(zhuǎn),請(qǐng)?zhí)骄?/span>的值,并說明理由.
【答案】(1)①a;②;(2);(3)見解析.
【解析】
試題分析:(1)①如圖2,∵PM⊥BC,AB⊥B,∴△PMC∽△ABC,∴=,又∵AP=2PC,∴=,即=,∴PM=a,即正方形PMCN的邊長(zhǎng)是a;
②當(dāng)AP=nPC時(shí)(n是正實(shí)數(shù)),=,∴PM=a,∴四邊形PMCN的面積=(a)2=;
(2)如圖3,過P作PG⊥BC于G,作PH⊥CD于H,則∠PGM=∠PHN=90°,∠GPH=90°,∵Rt△PEF中,∠FPE=90°,∴∠GPM=∠HPN,∴△PGM∽△PHN,∴=,由PG∥AB,PH∥AD可得,,
∵AB=a,BC=b,∴,即=,∴=;
(3)如圖4,過P作PG∥AB,交BC于G,作PH∥AD,交CD于H,則∠HPG=∠DAB,∵∠EPF=∠BAD,∴∠EPF=∠GPH,即∠EPH+∠HPN=∠EPH+∠GPM,∴∠HPN=∠GPM,∵∠B+∠D=180°,∴∠PGC+∠PHC=180°,又∵∠PHN+∠PHC=180°,∴∠PGC=∠PHN,∴△PGM∽△PHN,∴=①,由PG∥AB,PH∥AD可得, ==,即=②,∴由①②可得, =.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊AD,BC上,頂點(diǎn)F,H在菱形ABCD的對(duì)角線BD上.
(1)求證:BG=DE.
(2)若E為AD中點(diǎn),FH=2,求菱形ABCD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在點(diǎn)上正方的處發(fā)出一球,羽毛球飛行的高度與水平距離之間滿足函數(shù)表達(dá)式.已知點(diǎn)與球網(wǎng)的水平距離為,球網(wǎng)的高度為.
(1)當(dāng)時(shí),①求的值.②通過計(jì)算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到點(diǎn)的水平距離為,離地面的高度為的處時(shí),乙扣球成功,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線分別交軸、軸于點(diǎn)A、B,拋物線過A,B兩點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),過點(diǎn)P作PC 軸于點(diǎn)C,交拋物線于點(diǎn)D.
(1)若拋物線的解析式為,設(shè)其頂點(diǎn)為M,其對(duì)稱軸交AB于點(diǎn)N.
①求點(diǎn)M、N的坐標(biāo);
②是否存在點(diǎn)P,使四邊形MNPD為菱形?并說明理由;
(2)當(dāng)點(diǎn)P的橫坐標(biāo)為1時(shí),是否存在這樣的拋物線,使得以B、P、D為頂點(diǎn)的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+4與坐標(biāo)軸分別交于點(diǎn)A、B,與直線y=x交于點(diǎn)C.在線段OA上,動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)O做勻速運(yùn)動(dòng),當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).分別過點(diǎn)P、Q作x軸的垂線,交直線AB、OC于點(diǎn)E、F,連接EF.若運(yùn)動(dòng)時(shí)間為t秒,在運(yùn)動(dòng)過程中四邊形PEFQ總為矩形(點(diǎn)P、Q重合除外).
(1)求點(diǎn)P運(yùn)動(dòng)的速度是多少?
(2)當(dāng)t為多少秒時(shí),矩形PEFQ為正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線MN與x軸,y軸分別相交于A,C兩點(diǎn),分別過A,C兩點(diǎn)作x軸,y軸的垂線相交于B點(diǎn),且OA,OC(OA>OC)的長(zhǎng)分別是一元二次方程x2﹣14x+48=0的兩個(gè)實(shí)數(shù)根.
(1)求C點(diǎn)坐標(biāo);
(2)求直線MN的解析式;
(3)在直線MN上存在點(diǎn)P,使以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的一邊AB為直徑作⊙O,交于BC的中點(diǎn)D,過點(diǎn)D作直線EF與⊙O相切,交AC于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F.若△ABC的面積為△CDE的面積的8倍,則下列結(jié)論中,錯(cuò)誤的是( 。
A.AC=2AOB.EF=2AEC.AB=2BFD.DF=2DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 與x軸只有一個(gè)交點(diǎn),且交點(diǎn)為A(-2,0).
(1)求b,c的值;
(2)若拋物線與y軸的交點(diǎn)為B,坐標(biāo)原點(diǎn)為O,求△OAB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com