【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點C的坐標(biāo)為(4,﹣1).
①以O(shè)為位似中心在第二象限作位似比為1:2變換,得到對應(yīng)的△A1B1C1 , 畫出△A1B1C1 , 并寫出C1的坐標(biāo);
②以原點O為旋轉(zhuǎn)中心,畫出把△ABC順時針旋轉(zhuǎn)90°的圖形△A2B2C2 , 并寫出C2的坐標(biāo).
【答案】解:①如圖所示:△A1B1C1,即為所求,
C1的坐標(biāo)為:(﹣8,2);
②如圖所示:△A2B2C2,即為所求,
C2的坐標(biāo)為:(﹣1,﹣4).
【解析】①直接利用位似圖形的性質(zhì)得出對應(yīng)點位置進而得出答案;②直接利用旋轉(zhuǎn)的性質(zhì)得出對應(yīng)點位置,進而得出答案.
【考點精析】本題主要考查了作圖-位似變換的相關(guān)知識點,需要掌握對應(yīng)點到位似中心的距離比就是位似比,對應(yīng)線段的比等于位似比,位似比也有順序;已知圖形的位似圖形有兩個,在位似中心的兩側(cè)各有一個.位似中心,位似比是它的兩要素才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點M在AC邊上,點N從點C出發(fā)沿折線CB﹣BA運動到點A停止,點P是點C關(guān)于直線MN的對稱點,連接MP,NP(當(dāng)點N與點C,A重合時,點P均與點C重合).
(1)若CM=2,
①又當(dāng)點N在CB上,MP∥BC時,則CN= , MN=;
(2)在(1)的條件下,求點P到AB邊的距離的最小值,并求出當(dāng)取得這個最小值時,點P運動路線的長是多少?(參考數(shù)據(jù):sin54°=cos36°≈ ,sin36°=cos54°≈ ,結(jié)果保留π)
(3)設(shè)MC=a(a>2),其他條件不變,當(dāng)有且只能有唯一的點P落在線段AB上時,直接寫出a的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有5張邊長為2的正方形紙片,4張邊長分別為2、3的矩形紙片,6張邊長為3的正方形紙片,從其中取出若干張紙片,且每種紙片至少取一張,把取出的這些紙片拼成一個正方形(原紙張進行無空隙、無重疊拼接),則拼成正方形的邊長最大為 ( )
A. 6B. 7C. 8D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題:
(1)(﹣8)+3+10+(﹣2)
(2)(﹣2)×(﹣6)÷(﹣)
(3)(﹣1)100×2+(﹣2)3÷4
(4)2(a﹣3b)+3(2b﹣3a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別是A(2,2)、B(4,0)、C(4,﹣4).
①請畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
②以點O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售某種商品,原價560元.隨著不同幅度的降價(元),日銷售量(件)發(fā)生相應(yīng)變化,關(guān)系如圖所示:
(1)根據(jù)圖像完成下表
降價/元 | 5 | 10 | 15 | |
日銷售量/件 | 780 | 840 | 870 |
(2)售價為560元時,日銷售量為多少件.
(3)如果該商場要求日銷售量為1110件,該商品應(yīng)降價多少元.
(4)設(shè)該商品的售價為元,日銷售量為件,求與之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(2,3),點B(﹣2,1),在x軸上存在點P到A,B兩點的距離之和最小,則P點的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個小組同時從甲地出發(fā),勻速步行到乙地,甲乙兩地相距7500米,第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達(dá)乙地.設(shè)第二組的步行速度為x千米/小時,根據(jù)題意可列方程是( )
A. ﹣ =15
B. ﹣ =
C. ﹣ =15
D. ﹣ =
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com