【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A-3,0)、B1,0)、C0,3)三點(diǎn),其頂點(diǎn)為D,連接AD,點(diǎn)P是線段AD上一個(gè)動(dòng)點(diǎn)(不與A、D重合),過點(diǎn)Py軸的垂線,垂足點(diǎn)為E,連接AE

1)求拋物線的函數(shù)解析式,并寫出頂點(diǎn)D的坐標(biāo);

2)如果P點(diǎn)的坐標(biāo)為(x,y),△PAE的面積為S,求Sx之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍,并求出S的最大值;

3)在(2)的條件下,當(dāng)S取到最大值時(shí),過點(diǎn)Px軸的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′,求出P′的坐標(biāo),并判斷P′是否在該拋物線上.

【答案】1)解析式為: ,頂點(diǎn)坐標(biāo)為:(-14);

2, ,最大值為: ;

3P′不在該拋物線上

【解析】試題分析:(1)由拋物線y=ax2+bx+c經(jīng)過A-3,0)、B10)、C03)三點(diǎn),則代入求得a,b,c,進(jìn)而得解析式與頂點(diǎn)D

2)由PAD上,則可求AD解析式表示P點(diǎn).由SAPE=PEyP,所以S可表示,進(jìn)而由函數(shù)最值性質(zhì)易得S最值.

3)由最值時(shí),P為(-3),則EC重合.畫示意圖,P'過作P'My軸,設(shè)邊長通過解直角三角形可求各邊長度,進(jìn)而得P'坐標(biāo).判斷P′是否在該拋物線上,將xP'坐標(biāo)代入解析式,判斷是否為yP'即可.

試題解析:(1拋物線y=ax2+bx+c經(jīng)過A-3,0)、B1,0)、C03)三點(diǎn),

,

解得

解析式為y=-x2-2x+3

∵-x2-2x+3=-x+12+4,

拋物線頂點(diǎn)坐標(biāo)D為(-1,4).

2∵A-30),D-1,4),

設(shè)AD為解析式為y=kx+b,有

解得,

∴AD解析式:y=2x+6,

∵PAD上,

∴Px2x+6),

SAPE=PEyP=-x2x+6=-x2-3x-3x-1),

當(dāng)x=-時(shí),S取最大值

3)如圖1,設(shè)P′Fy軸交于點(diǎn)N,過P′P′M⊥y軸于點(diǎn)M,

∵△PEF沿EF翻折得P′EF,且P-,3),

∴∠PFE=P′FE,PF=P′F=3PE=P′E=,

∵PF∥y軸,

∴∠PFE=∠FEN,

∵∠PFE=∠P′FE,

∴∠FEN=∠P′FE,

∴EN=FN

設(shè)EN=m,則FN=m,P′N=3-m

Rt△P′EN中,

3-m2+2=m2,

m=

SP′EN=P′NP′E=ENP′M,

P′M=

Rt△EMP′中,

EM=,

OM=EO-EM=,

P′, ).

當(dāng)x=時(shí),y=-2-2+3=,

點(diǎn)P′不在該拋物線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,M,N分別為BC,CD的中點(diǎn),AM=1,AN=2,MAN=60°,AM DC的延長線相交于點(diǎn)E,則AB的長為_____________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在青山區(qū)海綿城市工程中,某工程隊(duì)接受一段道路施工的任務(wù),計(jì)劃從201610月初至20179月底(12個(gè)月)完成施工3個(gè)月后,實(shí)行倒計(jì)時(shí),提高工作效率,剩余工程量與施工時(shí)間的關(guān)系如圖所示,那么按提高工作效率后的速度做完全部工程,則工期可縮短________個(gè)月.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某地,人們發(fā)現(xiàn)某種蟋蟀1min,所叫次數(shù)x與當(dāng)?shù)販囟萒之間的關(guān)系或?yàn)門=ax+b,下面是蟋蟀所叫次數(shù)與溫度變化情況對(duì)照表:

蟋蟀叫的次數(shù)(x)

84

98

119

溫度(℃)T

15

17

20

①根據(jù)表中的數(shù)據(jù)確定a、b的值.

②如果蟋蟀1min叫63次,那么該地當(dāng)時(shí)的溫度約為多少攝氏度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寒假即將到來,外出旅游的人數(shù)逐漸增多,對(duì)旅行包的需求也將增多,某店準(zhǔn)備到生產(chǎn)廠家購買旅行包,該廠有甲、乙兩種新型旅行包.若購進(jìn)10個(gè)甲種旅行包和20個(gè)乙種旅行包共需5600元,若購進(jìn)20個(gè)甲種旅行包和10個(gè)乙種旅行包共需5200元.

1)甲、乙兩種旅行包的進(jìn)價(jià)分別是多少元?

2)若該店恰好用了7000元購買旅行包;

①設(shè)該店購買了m個(gè)甲種旅行包,求該店購買乙種旅行包的個(gè)數(shù);

②若該店將甲種旅行包的售價(jià)定為298元,乙種旅行包的售價(jià)定為325元,則當(dāng)該店怎么樣進(jìn)貨,才能獲得最大利潤,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,用3根火柴可拼成1個(gè)三角形,5根火柴可拼成2個(gè)三角形,7根火柴可拼成3個(gè)三角形……,按這個(gè)規(guī)律拼,用99根火柴可拼成____個(gè)三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形中,,,.點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長度/秒的速度沿的方向運(yùn)動(dòng),點(diǎn)從點(diǎn)沿的方向與點(diǎn)同時(shí)出發(fā);當(dāng)點(diǎn)第一次回到點(diǎn)時(shí),點(diǎn),同時(shí)停止運(yùn)動(dòng);用(秒)表示運(yùn)動(dòng)時(shí)間.

1)當(dāng)為多少時(shí),的中點(diǎn);

2)若點(diǎn)的運(yùn)動(dòng)速度是個(gè)單位長度/秒,是否存在的值,使得

3)若點(diǎn)的運(yùn)動(dòng)速度是個(gè)單位長度/秒,當(dāng)點(diǎn)邊上的三等分點(diǎn)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某湖上風(fēng)景區(qū)有兩個(gè)觀望點(diǎn)A,C和兩個(gè)度假村B、D;度假村DC正西方向,度假村BC的南偏東方向,度假村B到兩個(gè)觀望點(diǎn)的距離都等于2km

1)在圖中標(biāo)出A、B、C、D的位置,并寫出道路CDCB的夾角.

2)如果度假村DC是直公路,長為1km,DA是環(huán)湖路,度假村B到兩個(gè)觀望點(diǎn)的總路程等于度假村D到兩個(gè)觀望點(diǎn)的總路程.求出環(huán)湖路的長.

3)根據(jù)題目中的條件,能夠判定嗎?若能,請(qǐng)寫出判斷過程;若不能,請(qǐng)你添加一個(gè)條件,判定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的弦,AC是⊙O的直徑,D為⊙O上一點(diǎn),過D作⊙O的切線交BA的延長線于P,且DP⊥BP于P.若PD+PA=6,AB=6,則⊙O的直徑AC的長為( )

A. 5 B. 8 C. 10 D. 12

查看答案和解析>>

同步練習(xí)冊(cè)答案