【題目】如圖,ABC為銳角三角形,ADBC邊上的高,正方形EFGH的一邊FGBC上,頂點E、H分別在ABAC上,已知BC40cmAD30cm.

1)求證:AEH∽△ABC;

2)求這個正方形的邊長.

【答案】(1)詳見解析;(2)正方形EFGH的邊長為cm

【解析】

(1)根據(jù)EHBC得出AEH∽△ABC;

(2)設(shè)ADEH交于點M,證明四邊形EFDM是矩形,設(shè)正方形邊長為x,再利用AEH∽△ABC,得,列出方程即可解決問題.

1)證明:∵四邊形EFGH是正方形, EHBC

∴∠AEH=B,∠AHE=C, ∴△AEH∽△ABC

2)解:如圖設(shè)ADEH交于點M

∵∠EFD=FEM=FDM=90°,

∴四邊形EFDM是矩形, EF=DM,設(shè)正方形EFGH的邊長為x, ∵△AEH∽△ABC,

∴正方形EFGH的邊長為cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地特產(chǎn)檳榔芋深受歡迎,某商場以7元/千克收購了3000千克優(yōu)質(zhì)檳榔芋,若現(xiàn)在馬上出售,每千克可獲得利潤3元.根據(jù)市場調(diào)查發(fā)現(xiàn),近段時間內(nèi)檳榔芋的售價每天上漲0.2元/千克,為了獲得更大利潤,商家決定先貯藏一段時間后再出售.根據(jù)以往經(jīng)驗,這批檳榔芋的貯藏時間不宜超過100天,在貯藏過程中平均每天損耗約10千克.

1)若商家將這批檳榔芋貯藏x天后一次性出售,請完成下列表格:

每千克檳榔芋售價(單位:元)

可供出售的檳榔芋重量(單位:千克)

現(xiàn)在出售

3000

x天后出售

2)將這批檳榔芋貯藏多少天后一次性出售最終可獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O為等邊三角形ABC內(nèi)一點,連接OA,OBOC,將線段BO繞點B順時針旋轉(zhuǎn)60°到BM,連接CM,OM

1)求證:AOCM;

2)若OA8OC6,OB10,判斷△OMC的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知k為實數(shù),關(guān)于x的方程為x2(k2)x2k1.

(1)判斷方程有無實數(shù)根.

(2)當(dāng)方程的根和k都是有理數(shù)時,請直接寫出其中k1個值和相應(yīng)方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,中線BE、CD相交于點O,連接DE,下列結(jié)論:①;②;③;④;其中正確的個數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC

其中正確的是(  。

A. ①②③④ B. ②③ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過點A,動直線x=t(0<t<8)與反比例函數(shù)的圖象交于點M,與直線AB交于點N.

(1)求k的值;

(2)當(dāng)t=4時,求△BMN面積;

(3)若MA⊥AB,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)畫出ABC向下平移4個單位長度得到的A1B1C1,點C1的坐標(biāo)是  ;

(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為2:1,點C2的坐標(biāo)是   ;

(3)A2B2C2的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P上一動點,連接AP,作∠APC=45°,交弦AB于點C.已知AB=6cm,設(shè)A,P兩點間的距離為xcm,P,C兩點間的距離為y1cm,A,C兩點間的距離為y2cm.(當(dāng)點P與點A重合時,y1,y2的值為0;當(dāng)點P與點B重合時,y1的值為0,y2的值為6).

小智根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小智的探究過程,請補充完整:

1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了yx的幾組對應(yīng)值;

x/cm

0

1

2

3

4

5

6

y1/cm

0

1.21

2.09

m

2.99

2.82

0

y2/cm

0

0.87

1.57

2.20

2.83

3.61

6

經(jīng)測量m的值是 (保留一位小數(shù)).

2)在同一平面直角坐標(biāo)系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1)(x,y2),并畫出函數(shù)yspan>1y2的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)△ACP為等腰三角形時,AP的長度約為 cm(保留一位小數(shù)).

查看答案和解析>>

同步練習(xí)冊答案