(2007•內(nèi)江)探索研究:
(1)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是______;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個(gè)數(shù)列的第n項(xiàng),那么a18=______,an=______;
(2)如果欲求1+3+32+33+…+320的值,可令s=1+3+32+33+…+320
將①式兩邊同乘以3,得②
由②減去①式,得S=______.
(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…,an,從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,則an=______(用含a1,q,n的代數(shù)式表示),如果這個(gè)常數(shù)q≠1,那么a1+a2+a3+…+an=______(用含a1,q,n的代數(shù)式表示).
【答案】分析:(1)根據(jù)題意,可得在這個(gè)數(shù)列中,從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)之比是2;有第一個(gè)數(shù)為2,故可得a18,an的值;
(2)根據(jù)題中的提示,可得S的值;
(3)由(2)的方法,依次可以推出a1+a2+a3+…+an的值,注意分兩種情況討論.
解答:解:(1)2,218,2n;

(2)令s=1+3+32+33+…+320
3S=3+32+33+34+…+321
3S-S=321-1
S=;

(3)a1qn-1,
點(diǎn)評:本題是一道找規(guī)律的題目,要求學(xué)生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題.本題的規(guī)律為:這個(gè)數(shù)列中,從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)之比是2.要注意:第(3)題要注意分兩種情況討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年黑龍江省綏化市中考數(shù)學(xué)預(yù)測試卷(3)(解析版) 題型:解答題

(2007•內(nèi)江)如圖,已知平行四邊形ABCD的頂點(diǎn)A的坐標(biāo)是(0,16),AB平行于x軸,B,C,D三點(diǎn)在拋物線y=x2上,DC交y軸于N點(diǎn),一條直線OE與AB交于E點(diǎn),與DC交于F點(diǎn),如果E點(diǎn)的橫坐標(biāo)為a,四邊形ADFE的面積為
(1)求出B,D兩點(diǎn)的坐標(biāo);
(2)求a的值;
(3)作△ADN的內(nèi)切圓⊙P,切點(diǎn)分別為M,K,H,求tan∠PFM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年江蘇省鎮(zhèn)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•鎮(zhèn)江)探索、研究:下圖是按照一定的規(guī)律畫出的一列“樹型”圖,下表的n表示“樹型”圖的序號,an表示第n個(gè)“樹型”圖中“樹枝”的個(gè)數(shù).
圖:
表:
 n 1
 an 115 
(1)根據(jù)“圖”、“表”可以歸納出an關(guān)于n的關(guān)系式為______.
若直線l1經(jīng)過點(diǎn)(a1,a2)、(a2,a3),求直線l1對應(yīng)的函數(shù)關(guān)系式,并說明對任意的正整數(shù)n,點(diǎn)(an,an+1)都在直線l1上.
(2)設(shè)直線l2:y=-x+4與x軸相交于點(diǎn)A,與直線l1相交于點(diǎn)M,雙曲線y=(x>0)經(jīng)過點(diǎn)M,且與直線l2相交于另一點(diǎn)N.
①求點(diǎn)N的坐標(biāo),并在如圖所示的直角坐標(biāo)系中畫出雙曲線及直線l1、l2
②設(shè)H為雙曲線在點(diǎn)M、N之間的部分(不包括點(diǎn)M、N),P為H上一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為t,直線MP與x軸相交于點(diǎn)Q,當(dāng)t為何值時(shí),△MQA的面積等于△PMA的面積的2倍又是否存在t的值,使得△PMA的面積等于1?若存在,求出t的值;若不存在,請說明理由.
③在y軸上是否存在點(diǎn)G,使得△GMN的周長最小?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《代數(shù)式》(05)(解析版) 題型:解答題

(2007•內(nèi)江)探索研究:
(1)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是______;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個(gè)數(shù)列的第n項(xiàng),那么a18=______,an=______;
(2)如果欲求1+3+32+33+…+320的值,可令s=1+3+32+33+…+320
將①式兩邊同乘以3,得②
由②減去①式,得S=______.
(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…,an,從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,則an=______(用含a1,q,n的代數(shù)式表示),如果這個(gè)常數(shù)q≠1,那么a1+a2+a3+…+an=______(用含a1,q,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省寧波市余姚中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•內(nèi)江)探索研究:
(1)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是______;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個(gè)數(shù)列的第n項(xiàng),那么a18=______,an=______;
(2)如果欲求1+3+32+33+…+320的值,可令s=1+3+32+33+…+320
將①式兩邊同乘以3,得②
由②減去①式,得S=______.
(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…,an,從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,則an=______(用含a1,q,n的代數(shù)式表示),如果這個(gè)常數(shù)q≠1,那么a1+a2+a3+…+an=______(用含a1,q,n的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案