【題目】如圖,在平面直角坐標(biāo)系中,以為圓心作⊙,⊙與軸交于、,與軸交于點(diǎn),為⊙上不同于、的任意一點(diǎn),連接、,過點(diǎn)分別作于,于.設(shè)點(diǎn)的橫坐標(biāo)為,.當(dāng)點(diǎn)在⊙上順時(shí)針從點(diǎn)運(yùn)動(dòng)到點(diǎn)的過程中,下列圖象中能表示與的函數(shù)關(guān)系的部分圖象是( )
A.B.C.D.
【答案】A
【解析】
由題意,連接PC、EF,利用勾股定理求出,然后得到AB的長度,由垂徑定理可得,點(diǎn)E是AQ中點(diǎn),點(diǎn)F是BQ的中點(diǎn),則EF是△QAB的中位線,即為定值,由,即可得到答案.
解:如圖,連接PC,EF,則
∵點(diǎn)P為(3,0),點(diǎn)C為(0,2),
∴,
∴半徑,
∴;
∵于,于,
∴點(diǎn)E是AQ中點(diǎn),點(diǎn)F是BQ的中點(diǎn),
∴EF是△QAB的中位線,
∴為定值;
∵AB為直徑,則∠AQB=90°,
∴四邊形PFQE是矩形,
∴,為定值;
∴當(dāng)點(diǎn)在⊙上順時(shí)針從點(diǎn)運(yùn)動(dòng)到點(diǎn)的過程中,y的值不變;
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)P為直線BD,CE的交點(diǎn).
(1)如圖,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)D在線段CE上時(shí),連接BE,下列給出兩個(gè)結(jié)論:①BD=CD+AD;②BE2=2(AD2+AB2).其中正確的是 ,并給出證明.
(2)若AB=4,AD=2,把△ADE繞點(diǎn)A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時(shí),求PB的長;
②旋轉(zhuǎn)過程中線段PB長的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,直線經(jīng)過點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)是直線上方拋物線上的一動(dòng)點(diǎn),求面積的最大值并求出此時(shí)點(diǎn)的坐標(biāo);
(3)過點(diǎn)的直線交直線于點(diǎn),連接當(dāng)直線與直線的一個(gè)夾角等于的2倍時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使PA+PC的值最?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說明理由;(3)設(shè)點(diǎn)M在拋物線的對(duì)稱軸上,當(dāng)△MAC是直角三角形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,D是AC中點(diǎn),BE平分∠ABD交AC于點(diǎn)E,點(diǎn)O是AB上一點(diǎn),⊙O過B、E兩點(diǎn),交BD于點(diǎn)G,交AB于點(diǎn)F.
(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;
(2)當(dāng)BD=6,AB=10時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),.
(1)若,求的值;
(2)過點(diǎn)作與軸平行的直線,交拋物線于點(diǎn),.當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=3動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC以每秒4個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)P(不與點(diǎn)A、C重合)作EF⊥AC,交AB或BC于點(diǎn)E,交AD或DC于點(diǎn)F,以EF為邊向右作正方形EFGH設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)①AC= .②當(dāng)點(diǎn)F在AD上時(shí),用含t的代數(shù)式直接表示線段PF的長 .
(2)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),求t的值.
(3)設(shè)方形EFGH的周長為l,求l與t之間的函數(shù)關(guān)系式.
(4)直接寫出對(duì)角線AC所在的直線將正方形EFGH分成兩部分圖形的面積比為1:2時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt中,∠A=90°,AC=4,,將沿著斜邊BC翻折,點(diǎn)A落在點(diǎn)處,點(diǎn)D、E分別為邊AC、BC的中點(diǎn),聯(lián)結(jié)DE并延長交所在直線于點(diǎn)F,聯(lián)結(jié),如果為直角三角形時(shí),那么____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn).
(1)求直線的函數(shù)表達(dá)式;
(2)點(diǎn)是線段上的一點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(3)如圖2,在(2)的條件下,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)落在點(diǎn)處,連結(jié),求的面積,并直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com