【題目】曲阜限制“三小車輛”出行后,為方便市民出行,準(zhǔn)備為、、、四個(gè)村建一個(gè)公交車站.
(1)請(qǐng)問:公交站建在何處才能使它到4個(gè)村的距離之和最小,請(qǐng)?jiān)趫D一中找出點(diǎn);
(2)請(qǐng)問:公交站建在何處才能使它到道路、、的距離相等,請(qǐng)?jiān)趫D二中找出點(diǎn)并加以說明.
【答案】(1)見解析;(2)見解析
【解析】
(1)公交站P是AC與BD的交點(diǎn),要證這點(diǎn)到四點(diǎn)的距離最小,可以證明除這點(diǎn)以外的點(diǎn)到四點(diǎn)的距離大于這點(diǎn)到四點(diǎn)的距離;
(2)公交站是∠ABC與∠DCB角平分線的交點(diǎn),由角平分線性質(zhì)定理可知,角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等.
解:(1)應(yīng)建在AC,BD連線的交點(diǎn)P處,如圖一,
理由:如下圖,若不建在P處,建在P1處,由三角形兩邊之和大于第三邊可知,
,
即P1A+P1C+P1B+P1D>AC+BD,
故結(jié)論成立應(yīng)建在P處.
即P1A+P1C+P1B+P1D>AC+BD.
故結(jié)論成立應(yīng)建在P處.
(2)應(yīng)建在∠ABC與∠DCB角平分線的交點(diǎn)處,如圖二,
理由:由角平分線性質(zhì)定理可知,角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等.
所以點(diǎn)P道路、、的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的是麗水市統(tǒng)計(jì)局公布的2010~2013年全社會(huì)用電量的折線統(tǒng)計(jì)圖.
(1)根據(jù)統(tǒng)計(jì)圖填寫統(tǒng)計(jì)表:
2010~2013年麗水市全社會(huì)用電量統(tǒng)計(jì)表
年份 | 2010 | 2011 | 2012 | 2013 |
全社會(huì)用電量 (單位:億KW·h) | 13.33 |
(2)根據(jù)麗水市2010年至2013年全社會(huì)用電量統(tǒng)計(jì)數(shù)據(jù),求2011~2013年全社會(huì)用電量的年平均增長(zhǎng)率(保留到0.01).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,某社會(huì)實(shí)踐活動(dòng)小組實(shí)地測(cè)量?jī)砂痘ハ嗥叫械囊欢魏拥膶挾?/span>,在河的南岸邊點(diǎn)A處,測(cè)得河的北岸邊點(diǎn)B在其北偏東45°方向,然后向西走60 m到達(dá)點(diǎn)C,測(cè)得點(diǎn)B在點(diǎn)C的北偏東60°方向,如圖②.
(1)求∠CBA的度數(shù);
(2)求出這段河的寬(結(jié)果精確到1 m,參考數(shù)據(jù):≈1.41,≈1.73).
① ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)30°的角BAC與角MON,頂點(diǎn)A在射線ON上某處,現(xiàn)保持角MON不動(dòng),將角BAC繞點(diǎn)A以每秒15°的速度順時(shí)針旋轉(zhuǎn),邊AB、AC分別與邊OM交于點(diǎn)P、Q,當(dāng)AC∥OM時(shí),交點(diǎn)Q消失旋轉(zhuǎn)結(jié)束。設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)當(dāng)t=2秒時(shí),OP:PQ= ;
(2)在運(yùn)動(dòng)的過程中,△APQ能否成為等腰三角形?若能,請(qǐng)利用備用圖,直接寫出此時(shí)的運(yùn)動(dòng)時(shí)間;
(3)在(2)中判斷△OAQ的形狀,并選擇其中的一個(gè)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點(diǎn)D是BC的中點(diǎn),將△ABD沿AD翻折得到△AED,連CE,則線段CE的長(zhǎng)等于( 。
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的半圓上,AB=4,∠CBA=30°,點(diǎn)D在AO上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱:DF⊥DE于點(diǎn)D,并交EC的延長(zhǎng)線于點(diǎn)F,下列結(jié)論:
①CE=CF;
②線段EF的最小值為;
③當(dāng)AD=1時(shí),EF與半圓相切;
④當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)O時(shí),線段EF掃過的面積是4.
其中正確的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn),且經(jīng)過點(diǎn),與軸分別交于兩點(diǎn).
(1)求直線和該拋物線的解析式;
(2)如圖1,點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),且在直線的上方,過點(diǎn)作軸的平行線與直線交于點(diǎn),求的最大值;
(3)如圖2,軸交軸于點(diǎn),點(diǎn)是拋物線上、之間的一個(gè)動(dòng)點(diǎn),直線、與分別交于、,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)正整數(shù)能寫成的形式(其中a,b均為自然數(shù)),則稱之為婆羅摩笈多數(shù),比如7和31均是婆羅摩笈多數(shù),因?yàn)?/span>7=22+3×12,31=22+3×32。
(1)請(qǐng)證明:28和217都是婆羅摩笈多數(shù)。
(2)請(qǐng)證明:任何兩個(gè)婆羅摩笈多數(shù)的乘積依舊是婆羅摩笈多數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市居民夏季(5月—10月)階梯電價(jià)價(jià)目如右表.李叔叔家8月份用電500度,他家這個(gè)月要電費(fèi)___元.張阿姨家8月份繳納電費(fèi)249.4元,她家這個(gè)月用電___度.(不計(jì)公共分?jǐn)偛糠郑?/span>
階梯 | 電量(度) | 電價(jià)/度 |
第一檔 | 0—260部分 | 0.59元 |
第二檔 | 261—600部分 | 0.64元 |
第三檔 | 601度以上部分 | 0.89元 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com