【題目】已知平行四邊形ABCD,連接AF,CEAF平分BC于點F,CE平分AD于點E

1)如圖1,求證:四邊形AFCE為平行四邊形;

2)如圖2,連接BD,分別交AF、CEG、H,若,在不添加其他輔助線的情況下,直接找出圖中面積為平行四邊形ABCD面積的的三角形或四邊形.

【答案】1)詳見解析;(2,;四邊形,四邊形

【解析】

1)利用角平分線的性質(zhì)再結(jié)合平行四邊形的性質(zhì)進而得出AFEC,即可得出答案;

2)連接EF,證明EF分別為ADBC中點,即可根據(jù)三角形面積公式和平行四邊形面積公式,知面積為行四邊形ABCD面積的;再根據(jù)圖形的對稱性,可知四邊形和四邊形面積相等,即可得出答案.

證明:(1)∵AF平分∠BAD,CE平分∠BCD,

∴∠FAE=BAE,∠FCE=FCD,

∵四邊形ABCD是平行四邊形,

∴∠BAE=FCD,ADBC,

∴∠FAE=FCE,∠FCE=CED,

∴∠FAE=CED

AFEC,

又∵AECF

∴四邊形AFCE為平行四邊形;

2)如圖,連接EF,

AF平分

∴∠EAF=BAF,

∵四邊形ABCD為平行四邊形,

ADBC,

∴∠EAF=BFA,

∴∠BAF=BFA

BA=BF,

BF=FC,即點FBC的中點,

同理可證點EAD中點,

,

易證四邊形,四邊形為全等圖形,

面積為平行四邊形ABCD面積的的三角形或四邊形有:,,四邊形,四邊形

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了促進學生多樣化發(fā)展,武漢市第八十一中學每周三組織開展了社團活動,分別設(shè)置了體育、舞蹈、文學、音樂社團(要求人人參與社團,每人只能選擇一項),為了解學生喜愛哪種社團活動,學校做了一次抽樣調(diào)查,根據(jù)收集到的數(shù)據(jù),繪制成兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:

1)此次共調(diào)查了   人,補齊舞蹈社團、音樂社團條形圖;

2)求音樂社團在扇形統(tǒng)計圖中所占圓心角的度數(shù)   ;

3)若該校有1600名學生,請估計喜歡體育類社團的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展了手機伴我健康行主題活動.他們隨機抽取部分學生進行手機使用目的每周使用手機時間的問卷調(diào)查,并繪制成如圖的統(tǒng)計圖。已知查資料人人數(shù)是40人。

請你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計圖中,玩游戲對應(yīng)的圓心角度數(shù)是_______________。

2)補全條形統(tǒng)計圖

3)該校共有學生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,EAB的中點,將ADE沿直線DE折疊后,點A落在點F處,DF交對角線ACG,則FG的長是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線m>0)與x軸交于AB兩點,點B在點A的右側(cè),頂點為C,拋物線與y軸交于點D,直線CAy軸于E,且

1)求點A,點B的坐標;

2)將BCO繞點C逆時針旋轉(zhuǎn)一定角度后,點B與點A重合,點O恰好落在y軸上,

①求直線CE的解析式;

②求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形的邊長是2,是高所在直線上的一個動點,連接,將線段繞點逆時針旋轉(zhuǎn)得到,連接,則在點運動過程中,線段長度的最小值是(

A.B.1C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,點E,F是對角線BD上的兩點,且BEDF

1)如果四邊形AECF是平行四邊形,求證:四邊形ABCD也是平行四邊形;

2)如果四邊形AECF是菱形,求證:四邊形ABCD也是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A30°,點D是斜邊AB的中點,點GRtABC的重心,GEAC于點E.若BC6cm,則GE__cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

1)甲登山上升的速度是每分鐘   米,乙在A地時距地面的高度b   米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式;

3)登山多長時間時,甲、乙兩人距地面的高度差為70米?

查看答案和解析>>

同步練習冊答案