【題目】ABC三頂點(diǎn)A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2),A'B'C'ABC關(guān)于y軸對(duì)稱.

1)直接寫出A'、B'C'的坐標(biāo);

2)畫出A'B'C';

3)求ABC的面積.

【答案】1A'(﹣50)、B'(﹣24)、C'(﹣1,﹣2);(2)見解析;(311.

【解析】

1)根據(jù)三個(gè)頂點(diǎn)在坐標(biāo)系中的位置可得答案;

2)分別作出點(diǎn)A、BC關(guān)于y軸的對(duì)稱點(diǎn),再順次連接即可得;

3)利用割補(bǔ)法求解可得.

解:(1)∵A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2),

A'(﹣50)、B'(﹣24)、C'(﹣1,﹣2);

2)如圖所示,△A'B'C'即為所求.

3△ABC的面積為4×6×1×6×2×4×3×4

24346

11

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,射線OPAE,∠AOP的角平分線交射線AE于點(diǎn)B

1)若∠A=50°,求∠ABO的度數(shù);

2)如圖2,若點(diǎn)C在射線AE上,OB平分∠AOCAE于點(diǎn)B,OD平分∠COPAE于點(diǎn)D,∠ABO-AOB=70°,求∠ADO的度數(shù);

3)如圖3,若∠A=α,依次作出∠AOP的角平分線OB,∠BOP的角平分線OB1,∠B1OP的角平分線OB2,∠Bn-1OP的角平分線OBn,其中點(diǎn)B,B1,B2,Bn-1,Bn都在射線AE上,試求∠ABnO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(a,2)、B(2,b)都在雙曲線(x<0),點(diǎn)P、Q分別是x軸、y軸上的動(dòng)點(diǎn),當(dāng)四邊形PABQ的周長(zhǎng)取最小值時(shí),PQ所在直線的解析式是,則k的值為(

A.-7B.-4C.3D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一出租車一天下午以鼓樓為出發(fā)點(diǎn)在東西方向運(yùn)營(yíng),向東走為正,向西走為負(fù),行車?yán)锍蹋▎挝唬?/span>km)依先后次序記錄如下:.

1)將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點(diǎn)多遠(yuǎn)?在鼓樓的什么方向?

2)若每千米的價(jià)格為2.4元,司機(jī)一個(gè)下午的營(yíng)業(yè)額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線y=﹣x2﹣2x+3x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C

1)直接寫出A,B,C三點(diǎn)的坐標(biāo):A   ;B   ;C   ;

2)在該拋物線的對(duì)稱軸上是否存在點(diǎn)P,時(shí)APC的周長(zhǎng)最小,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

3)如圖②,若點(diǎn)E為第二象限拋物線上的一動(dòng)點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)與反比例函數(shù)的圖象交于A(1,m),B(n,3)兩點(diǎn),一次函數(shù)的圖象與y軸交于點(diǎn)C.

(1)求一次函數(shù)的解析式;

(2)點(diǎn)P是x軸上一點(diǎn),且△BOP的面積是△BOC面積的2倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+cx軸交于點(diǎn)A﹣10)和點(diǎn)B3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E、D是拋物線的頂點(diǎn).

1)求此拋物線的解析式;

2)求點(diǎn)C和點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更好地開展選修課,戲劇社的張老師統(tǒng)計(jì)了近五年該社團(tuán)學(xué)生參加市級(jí)比賽的獲獎(jiǎng)情況,并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問題:

該社團(tuán)2017年獲獎(jiǎng)學(xué)生人數(shù)占近五年獲獎(jiǎng)總?cè)藬?shù)的百分比為_____,補(bǔ)全折線統(tǒng)計(jì)圖;

該社團(tuán)2017年獲獎(jiǎng)學(xué)生中,初一、初二年級(jí)各有一名學(xué)生,其余全是初三年級(jí)學(xué)生,張老師打算從2017年獲獎(jiǎng)學(xué)生中隨機(jī)抽取兩名學(xué)生參加學(xué)校的藝術(shù)節(jié)表演,請(qǐng)你用列表法或畫樹狀圖的方法,求出所抽取兩名學(xué)生恰好都來自初三年級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD,AB=6,DAB=60°,AE分別交BC、BD于點(diǎn)E、F,CE=2,連接CF.以下結(jié)論:①∠BAF=BCF; ②點(diǎn)EAB的距離是2; SCDF:SBEF=9:4; tanDCF=3/7. 其中正確的有()

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案