【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,系列結(jié)論:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若點(diǎn)A(﹣2,y1),點(diǎn)B( ,y2),點(diǎn)C( ,y2)在該函數(shù)圖象上,則y1<y3<y2;(5)若m≠2,則m(am+b)>2(2a+b),其中正確的結(jié)論有(
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

【答案】A
【解析】解:∵拋物線的對(duì)稱軸為x=﹣ =2, ∴b=﹣4a,即4a+b=0,故(1)正確;
由圖象知,當(dāng)x=﹣2時(shí),y=4a﹣2b+c<0,
∴4a+c<2b,故(2)錯(cuò)誤;
∵圖象過點(diǎn)(﹣1,0),
∴a﹣b+c=0,即c=﹣a+b=﹣a﹣4a=﹣5a,
∴5a+3c=5a﹣15a=﹣10a,
∵拋物線的開口向下,
∴a<0,
則5a+3c=﹣10a>0,故(3)正確;
由圖象知拋物線的開口向下,對(duì)稱軸為x=2,
∴離對(duì)稱軸水平距離越遠(yuǎn),函數(shù)值越小,
∴y1<y2<y3 , 故(4)錯(cuò)誤;
∵當(dāng)x=2時(shí)函數(shù)取得最大值,且m≠2,
∴am2+bm+c<4a+2b+c,即m(am+b)<2(2a+b),故(5)錯(cuò)誤;
故選:A.
【考點(diǎn)精析】通過靈活運(yùn)用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,BD的坐標(biāo)為(1,0),(3,0),(0,1),點(diǎn)C在第四象限,ACB=90°,AC=BC.若ABCABC'關(guān)于點(diǎn)D成中心對(duì)稱,則點(diǎn)C'的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖像經(jīng)過第二象限內(nèi)的點(diǎn)A(-1,m),ABx軸于點(diǎn)B,AOB 的面積為2.若直線 y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)的圖象上另一點(diǎn)Cn,-2).

(1)求反比例函數(shù)與直線y=ax+b的解析式;

(2)連接OC,求△AOC的面積;

(3)根據(jù)所給條件,直接寫出不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將直角邊長(zhǎng)為6的等腰直角△AOC放在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)C、A分別在x軸,y軸的正半軸上,一條拋物線經(jīng)過點(diǎn)A、C及點(diǎn)B(﹣3,0).

(1)求該拋物線的解析式;
(2)若點(diǎn)P是線段BC上一動(dòng)點(diǎn),過點(diǎn)P作AB的平行線交AC于點(diǎn)E,連接AP,當(dāng)△APE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P(t,t)在拋物線上,則稱點(diǎn)P為拋物線的不動(dòng)點(diǎn),將(1)中的拋物線進(jìn)行平移,平移后,該拋物線只有一個(gè)不動(dòng)點(diǎn),且頂點(diǎn)在直線y=2x﹣ 上,求此時(shí)拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=4,∠AMN=30°,點(diǎn)B為弧AN的中點(diǎn),點(diǎn)P是直徑MN上的一個(gè)動(dòng)點(diǎn),則PA+PB的最小值為(
A.2
B.2
C.4
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)分別填入相應(yīng)的集合里:+(-2),0,﹣0.314,(兩個(gè)1間的0的個(gè)數(shù)依次多1個(gè))﹣(﹣11),,,

正有理數(shù)集合:{     …},

無理數(shù)集合: {     …},

整數(shù)集合: {       …},

分?jǐn)?shù)集合: {       …}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】5×4的網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng).

(1)先在圖中將面積是5的一個(gè)長(zhǎng)方形分割成5塊,然后再畫出用這5塊拼成的一個(gè)正方形;

(2)設(shè)拼成的正方形的邊長(zhǎng)為a個(gè)單位長(zhǎng),

a是有理數(shù)還是無理數(shù)?

②試在數(shù)軸上將a的相反數(shù)表示出來;

③求出a的近似值(保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y= 的圖形如圖,以下結(jié)論: ①m<0;
②在每個(gè)分支上y隨x的增大而增大;
③若點(diǎn)A(﹣1,a),點(diǎn)B(2,b)在圖象上,則a<b;
④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(﹣x,﹣y)也在圖象上.其中正確的個(gè)數(shù)是(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-3,5),B(-2,1),C(-1,3).

(1)畫出△ABC經(jīng)過平移后得到的△A1B1C1,已知點(diǎn)C1的坐標(biāo)為(4,0),并寫出頂點(diǎn)B1的坐標(biāo);

(2)若△ABC和△A2B2C2關(guān)于原點(diǎn)O成中心對(duì)稱,畫出△A2B2C2 ,寫出頂點(diǎn)B2的坐標(biāo);

(3)將△ABC繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到△A3B3C3,,畫出圖形并寫出△A3B3C3頂點(diǎn)B3的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案