25、如圖①是一個長為2a,寬為2b的長方形,沿圖中虛線剪開,將其分成4個小長方形,然后按圖②的形狀拼成一個正方形.

(1)圖②中陰影部分的正方形的邊長等于多少?
(2)用兩種不同的方法求圖②中陰影部分的面積.
(3)由圖②你能寫出下列三個代數(shù)式間的關系嗎?
(a+b)2,(a-b)2,4ab
分析:本題考查對完全平方公式幾何意義的理解應用能力,觀察圖形,可得圖中陰影正方形的邊長=(a-b),因此面積可用兩種方法表示為(a-b)2;(a+b)2-4ab,再由圖中幾何圖形之間的關系可得完全平方公式變形公式:(a-b)2=(a+b)2-4ab.
解答:解:(1)圖②中陰影部分的正方形的邊長等于(a-b);
(2)用兩種不同的方法求圖②中陰影部分的面積:
(a-b)2
(a+b)2-4ab;
(3)(a-b)2=(a+b)2-4ab.
點評:對幾何圖形的整體分析,對完全平方公式的靈活應用變形整理是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖1是一個長為2a、寬為2b的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖2形狀拼成一個正方形.
(1)圖2中的空白部分的正方形的邊長是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求圖2中空白部分的正方形的面積.
(3)觀察圖2,用一個等式表示下列三個整式:(a+b)2,(a-b)2,ab之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1是一個長為2a,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按如圖2的形狀拼成一個正方形.
(1)圖2的陰影部分的正方形的邊長是
a-b
a-b

(2)用兩種不同的方法求圖中陰影部分的面積.
【方法1】S陰影=
(a-b)2
(a-b)2
;
【方法2】S陰影=
(a+b)2-4ab
(a+b)2-4ab

(3)觀察如圖2,寫出(a+b)2,(a-b)2,ab這三個代數(shù)式之間的等量關系.
(4)根據(jù)(3)題中的等量關系,解決問題:
若x+y=10,xy=16,求x-y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1是一個長為2a、寬為2b的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖2形狀拼成一個正方形.
(1)圖2中的空白部分的正方形的邊長是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求圖2中空白部分的正方形的面積.
(3)觀察圖2,用一個等式表示下列三個整式:(a+b)2,(a-b)2,ab之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源:江西省期末題 題型:解答題

如圖1是一個長為2a、寬為2b的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖2形狀拼成一個正方形.
(1)圖2中的空白部分的正方形的邊長是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求圖2中空白部分的正方形的面積.
(3)觀察圖2,用一個等式表示下列三個整式:(a+b)2,(a﹣b)2,ab之間的數(shù)量關系.
                                                  
                                                   圖1                                                圖2

查看答案和解析>>

科目:初中數(shù)學 來源:江西省期末題 題型:解答題

如圖1是一個長為2a、寬為2b的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖2形狀拼成一個正方形。
(1)圖2中的空白部分的正方形的邊長是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求圖2中空白部分的正方形的面積;
(3)觀察圖2,用一個等式表示下列三個整式:(a+b)2,(a-b)2,ab之間的數(shù)量關系。

查看答案和解析>>

同步練習冊答案