【題目】解下列方程
(1)x2+x﹣1=0
(2)x(x﹣2)+x﹣2=0.

【答案】
(1)

解:△=12﹣4×1×(﹣1)=5,

x=

所以x1= ,x2=


(2)

解:(x﹣2)(x+1)=0,

x﹣2=0或x+1=0,

所以x1=2,x2=﹣1


【解析】(1)利用公式法解方程;(2)利用因式分解法解方程.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解公式法的相關(guān)知識(shí),掌握要用公式解方程,首先化成一般式.調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比.確定參數(shù)abc,計(jì)算方程判別式.判別式值與零比,有無(wú)實(shí)根便得知.有實(shí)根可套公式,沒(méi)有實(shí)根要告之,以及對(duì)因式分解法的理解,了解已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢(shì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一塊長(zhǎng)5米寬4米的地毯,為了美觀設(shè)計(jì)了兩橫、兩縱的配色條紋(圖中陰影部分),已知配色條紋的寬度相同,所占面積是整個(gè)地毯面積的

(1)求配色條紋的寬度;
(2)如果地毯配色條紋部分每平方米造價(jià)200元,其余部分每平方米造價(jià)100元,求地毯的總造價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y= x+b的圖象與反比例函數(shù)y= (x<0)的圖象交于點(diǎn)A(﹣1,2)和點(diǎn)B,點(diǎn)C在y軸上.

(1)當(dāng)△ABC的周長(zhǎng)最小時(shí),求點(diǎn)C的坐標(biāo);
(2)當(dāng) x+b< 時(shí),請(qǐng)直接寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣ x2+bx+c與x軸交與點(diǎn)A(﹣3,0),點(diǎn)B(9,0),與y軸交與點(diǎn)C,頂點(diǎn)為D,連接AD、DB,點(diǎn)P為線(xiàn)段AD上一動(dòng)點(diǎn).

(1)求拋物線(xiàn)的解析式;
(2)過(guò)點(diǎn)P作BD的平行線(xiàn),交AB于點(diǎn)Q,連接DQ,設(shè)AQ=m,△PDQ的面積為S,求S關(guān)于m的函數(shù)解析式,以及S的最大值;
(3)如圖2,拋物線(xiàn)對(duì)稱(chēng)軸與x軸交與點(diǎn)G,E為OG的中點(diǎn),F(xiàn)為點(diǎn)C關(guān)于DG對(duì)稱(chēng)的對(duì)稱(chēng)點(diǎn),過(guò)點(diǎn)P分別作直線(xiàn)EF、DG的垂線(xiàn),垂足為M、N,連接MN,當(dāng)△PMN為等腰三角形時(shí),求此時(shí)EM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn) 與雙曲線(xiàn) 交于點(diǎn)A.將直線(xiàn) 向右平移6個(gè)單位后,與雙曲線(xiàn) 交于點(diǎn)B,與x軸交于點(diǎn)C,若 ,則k的值為(
A.12
B.14
C.18
D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)y=﹣ x2+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).

(1)求拋物線(xiàn)的解析式及它的對(duì)稱(chēng)軸方程;
(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線(xiàn)段BC所在直線(xiàn)的解析式;
(3)試判斷△AOC與△COB是否相似?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,C為 的中點(diǎn),若∠CBD=30°,⊙O的半徑為12.
(1)求∠BAD的度數(shù);
(2)求扇形OCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩圓圓心相同,大圓的弦AB與小圓相切,若圖中陰影部分的面積是16π,則AB的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)題意解答
(1)計(jì)算:|﹣ |+(π﹣3)0+( 1﹣2cos45°
(2)若關(guān)于x的一元二次方程x2+(k+3)x+k=0的一個(gè)根是﹣2,求方程的另一個(gè)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案