如圖①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=2,CD=4,另有一直角三角形EFG,∠EFG=90°,點(diǎn)G與點(diǎn)D重合,點(diǎn)E與點(diǎn)A重合,點(diǎn)F在AB上,讓△EFG的邊EF在AB上,點(diǎn)G在DC上,以每秒1個(gè)單位的速度沿著AB方向向右運(yùn)動,如圖②,點(diǎn)F與點(diǎn)B重合時(shí)停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒。
(1)在上述運(yùn)動過程中,請分別寫出當(dāng)四邊形FBCG為正方形和四邊形AEGD為平行四邊形時(shí)對應(yīng)時(shí)刻t的值或范圍;
(2)以點(diǎn)A為原點(diǎn),以AB所在直線為x軸,過點(diǎn)A垂直于AB的直線為y軸,建立如圖③所示的坐標(biāo)系,求過A,D,C三點(diǎn)的拋物線的解析式;
(3)探究:延長EG交(2)中的拋物線于點(diǎn)Q,是否存在這樣的時(shí)刻t使得△ABQ的面積與梯形ABCD的面積相等?若存在,求出t的值;若不存在,請說明理由。
解:(1)當(dāng)時(shí),四邊形為正方形,
當(dāng)時(shí),四邊形AEGD為平行四邊形;
(2)點(diǎn)D、C的坐標(biāo)分別是(),(),
∵拋物線經(jīng)過原點(diǎn)(0,0),
∴設(shè)拋物線的解析式為,
將D、C兩點(diǎn)坐標(biāo)代入得,解得
∴拋物線的解析式為;
(3)∵點(diǎn)Q在拋物線上,
∴點(diǎn)
過點(diǎn)Q作軸于點(diǎn)M,又B(5,0)




∵EG的延長線與拋物線交于x軸的上方
,解得
當(dāng)時(shí),,
,

(秒),
即存在這樣的時(shí)刻t,當(dāng)秒時(shí),的面積與梯形ABCD的面積相等。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖1,在梯形ABCD中AD∥BC,對角線AC,BD交于點(diǎn)P,則s△PAB=S△PDC,請你用梯形對角線的這一特殊性質(zhì),解決下面問題.
在圖2中,點(diǎn)E是△ABC中AB邊上的任意一點(diǎn),且AE≠BE,過點(diǎn)E畫一條直線,把△ABC分成面積相等的兩部分,保留作圖痕跡,并簡要說明你的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點(diǎn).
精英家教網(wǎng)
(1)求等腰梯形DEFG的面積;
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個(gè)單位的速度沿BC方向向右運(yùn)動,直到點(diǎn)D與點(diǎn)C重合時(shí)停止.設(shè)運(yùn)動時(shí)間為x秒,運(yùn)動后的等腰梯形為DEF′G′(如圖2).
探究1:在運(yùn)動過程中,四邊形BDG′G能否是菱形?若能,請求出此時(shí)x的值;若不能,請說明理由;
探究2:設(shè)在運(yùn)動過程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,已知:AD是△ABC中BC邊的中線,則S△ABD=S△ACD,依據(jù)是
等底等高的三角形面積相等

規(guī)定;若一條直線l把一個(gè)圖形分成面積相等的兩個(gè)圖形,則稱這樣的直線l叫做這個(gè)圖形的等積直線.根據(jù)此定義,在圖1中易知直線為△ABC的等積直線.
(1)如圖2,在矩形ABCD中,直線l經(jīng)過AD,BC邊的中點(diǎn)M、N,請你判斷直線l是否為該矩形的等積直線
(填“是”或“否”).在圖2中再畫出一條該矩形的等積直線.(不必寫作法)
(2)如圖3,在梯形ABCD中,直線l經(jīng)過上下底AD、BC邊的中點(diǎn)M、N,請你判斷直線l是否為該梯形的等積直線
(填“是”或“否”).
(3)在圖3中,過M、N的中點(diǎn)O任作一條直線PQ分別交AD,BC于點(diǎn)P、Q,如圖4所示,猜想PQ是否為該梯形的等積直線?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點(diǎn)M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請寫出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請直接寫出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•樂山)閱讀下列材料:
如圖1,在梯形ABCD中,AD∥BC,點(diǎn)M,N分別在邊AB,DC上,且MN∥AD,記AD=a,BC=b.若
AM
MB
=
m
n
,則有結(jié)論:MN=
bm+an
m+n

請根據(jù)以上結(jié)論,解答下列問題:
如圖2,圖3,BE,CF是△ABC的兩條角平分線,過EF上一點(diǎn)P分別作△ABC三邊的垂線段PP1,PP2,PP3,交BC于點(diǎn)P1,交AB于點(diǎn)P2,交AC于點(diǎn)P3
(1)若點(diǎn)P為線段EF的中點(diǎn).求證:PP1=PP2+PP3;
(2)若點(diǎn)P為線段EF上的任意位置時(shí),試探究PP1,PP2,PP3的數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

同步練習(xí)冊答案