【題目】在平面直角坐標系中,分別過點,作垂直于軸的直線和,探究直線、與函數(shù)的圖象(雙曲線)之間的關系,下列結論正確的是( )
A.兩條直線可能都不與雙曲線相交
B.當時,兩條直線與雙曲線的交點到原點的距離不相等
C.當時,兩條直線與雙曲線的交點都在軸左側
D.當時,兩條直線與雙曲線的交點都在軸右側
【答案】D
【解析】
反比例函數(shù)y=的圖象位于第一、三象限,過點A(m,0),B(m+2,0)垂直于x軸的直線l1和l2,根據(jù)m的值分別討論各種情況,并對選項做出判斷.
解:反比例函數(shù)y=的圖象位于第一、三象限,過點A(m,0),B(m+2,0)垂直于x軸的直線l1和l2,
無論m為何值,直線l1和l2至少由一條與雙曲線相交,因此A錯誤;
當m=1時,直線l1和l2與雙曲線的交點為(1,3),(3,1),它們到原點的距離均為,因此B錯誤;
當m<0時,但m+2的值不能確定是否小于0,因此兩條直線與雙曲線的交點不一定都在y軸的左側,因此C選項是不正確的;
當m>0時,m+2>0,兩條直線與雙曲線的交點都在y軸右側,因此D是正確的,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】為響應香洲區(qū)全面推進書香校園建設的號召,班長小青隨機調查了若干同學一周課外閱讀的時間t(單位:小時),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤7,B:7<t≤14,C:14<t≤21,D:t>21),根據(jù)圖中信息,解答下列問題:
(1)這項工作中被調查的總人數(shù)是多少?
(2)補全條形統(tǒng)計圖,并求出表示A組的扇形統(tǒng)計圖的圓心角的度數(shù);
(3)如果小青想從D組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發(fā)言代表,請用列表或樹狀圖的方法求出恰好選中甲的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形中,,點,分別在邊,上,且.
(1)如圖1,若,求證:;
(2)如圖2,若,且點為的中點,連接交于點,求;
(3)如圖3,若,探究線段、、三之間的數(shù)量關系,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,AB=AC,BD⊥AC,垂足為E,點F在BD的延長線上,且DF=DC,連接AF、CF.
(1)求證:∠BAC=2∠DAC;
(2)若AF=10,BC=4,求tan∠BAD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線為常數(shù))交軸于點,與軸的一個交點在和之間,頂點為.
①拋物線與直線有且只有一個交點;
②若點、點、點在該函數(shù)圖象上,則
③將該拋物線向左平移個單位,再向下平移個單位,所得拋物線解析式為;
④點關于直線的對稱點為點分別在軸和軸上,當時,四邊形周長的最小值為.
其中正確判斷的序號是( )
A.①②③B.①②④C.②③④D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△DEF都是等腰直角三角形,∠ACB=∠EFD=90,△DEF,的頂點E與△ABC的斜邊AB的中點重合.將△DEF繞點E旋轉,旋轉過程中,線段AC與線段EF相交于點Q,射線ED與射線BC相交于點P.
(1)求證:△AEQ∽△BPE;
(2)求證:PE平分∠BPQ;
(3)當AQ=2,AE=,求PQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com