【題目】如圖,在下列解答中,填寫適當(dāng)?shù)睦碛苫驍?shù)學(xué)式:

1)∵EBDC, (已知)

∴∠DAE=__. ___________________________________

2)∵∠BCF+AFC=180°,(已知)

_______. ___________________________________

3)∵ _______, (已知)

∴∠EFA=ECB . ___________________________________

【答案】(1)D,兩直線平行,內(nèi)錯(cuò)角相等;(2ADBC,同旁內(nèi)角互補(bǔ),兩直線平行;(3AD,BC,兩直線平行,同位角相等.

【解析】

根據(jù)平行線的判定,以及證明題的書寫規(guī)則解題即可

解:(1)∵EBDC,(已知)

∴∠DAE=D.兩直線平行,內(nèi)錯(cuò)角相等

2)∵∠BCF+AFC=180°,(已知)

ADBC. 同旁內(nèi)角互補(bǔ),兩直線平行;

3)∵ADBC(已知)

∴∠EFA=ECB .兩直線平行,同位角相等

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測(cè)儀,如平面幾何圖,AD=24m,D=90°,第一次探測(cè)到一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m.

1)求BC的距離.

2)通過計(jì)算,判斷此轎車是否超速.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的景點(diǎn),下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

(1)求被調(diào)查的學(xué)生總?cè)藬?shù);

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);

(3)若該校共有800名學(xué)生,請(qǐng)估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E在直線BC上,連接AE.將△ABE沿AE所在直線折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,連接AB′并延長(zhǎng)交直線DC于點(diǎn)F.

(1)當(dāng)點(diǎn)F與點(diǎn)C重合時(shí)如圖1,證明:DF+BE=AF;

(2)當(dāng)點(diǎn)FDC的延長(zhǎng)線上時(shí)如圖2,當(dāng)點(diǎn)FCD的延長(zhǎng)線上時(shí)如圖3,線段DF、BE、AF有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想,并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+b與坐標(biāo)軸交于C,D兩點(diǎn),直線AB與坐標(biāo)軸交于A,B兩點(diǎn),線段OA,OC的長(zhǎng)是方程x2﹣3x+2=0的兩個(gè)根(OA>OC).

(1)求點(diǎn)A,C的坐標(biāo);

(2)直線AB與直線CD交于點(diǎn)E,若點(diǎn)E是線段AB的中點(diǎn),反比例函數(shù)y=(k≠0)的圖象的一個(gè)分支經(jīng)過點(diǎn)E,求k的值;

(3)在(2)的條件下,點(diǎn)M在直線CD上,坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出滿足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1s后,BP= cm,CQ= cm

2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請(qǐng)說明理由;

3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?

4)若點(diǎn)Q以(3)中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是高,BE是中線,CF是角平分線,CFADG,交BEH.下列結(jié)論:SABESBCE;AFG=∠AGFFAG2ACF;BHCH.其中所有正確結(jié)論的序號(hào)是

A.①②③④B.①②③C.②④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】程大位是我國(guó)明朝商人,珠算發(fā)明家,他60歲時(shí)完成的《直指算法綜宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法,書中有如下問題:一百饅頭一百僧,大僧三個(gè)更無爭(zhēng),小僧三人分一個(gè),大小和尚得幾丁,意思是:有100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè),正好分完,大、小和尚各有多少人,則小和尚有__________人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知.點(diǎn)C在點(diǎn)的右側(cè), 平分么,平分所在的直線交于點(diǎn),點(diǎn)之間。

(1)如圖1,點(diǎn)在點(diǎn)A的左側(cè),若 ,的度數(shù)?

(2)如圖2,點(diǎn)在點(diǎn)A的右側(cè),若,直接寫出的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案