【題目】如圖,直線AB與CD相交于點O,∠AOE=90°.
(1)如圖1,若OC平分∠AOE,求∠AOD的度數;
(2)如圖2,若∠BOC=4∠FOB,且OE平分∠FOC,求∠EOF的度數.
【答案】(1)135°;(2)54°
【解析】
(1)利用OC平分∠AOE,可得∠AOC=∠AOE=×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.
(2)由∠BOC=4∠FOB,設∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根據OE平分∠COF,可得∠COE=∠EOF=∠COF=x°,即可得出.
(1)∵∠AOE=90°,OC平分∠AOE,
∴∠AOC=∠AOE=×90°=45°,
∵∠AOC+∠AOD=180°,
∴∠AOD=180°-∠AOC=180°-45°=135°,
即∠AOD的度數為135°.
(2)∵∠BOC=4∠FOB,
∴設∠FOB=x°,∠BOC=4x°
∴∠COF=∠COB-∠BOF
=4x°-x°=3x°
∵OE平分∠COF
∴∠COE=∠EOF=∠COF=x°
∵x+x=90°
∴x=36,
∴∠EOF=x°=×36°=54°
即∠EOF的度數為54°.
科目:初中數學 來源: 題型:
【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.
(1)求證:△ABQ≌△CAP;
(2)當點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數.
(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(1,0),點B(0, ),把△ABO繞點O順時針旋轉,得A′B′O,記旋轉角為α.
(Ⅰ)如圖①,當α=30°時,求點B′的坐標;
(Ⅱ)設直線AA′與直線BB′相交于點M.
如圖②,當α=90°時,求點M的坐標;
②點C(﹣1,0),求線段CM長度的最小值.(直接寫出結果即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國古代數學的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數學家楊輝(約13世紀)所著的《詳解九章算術》一書中,用如圖的三角形解釋二項式乘方(a+b)n的展開式的各項系數,此三角形稱為“楊輝三角”.
根據“楊輝三角”請計算(a+b)64的展開式中第三項的系數為( )
A. 2016 B. 2017 C. 2018 D. 2019
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AC=2AB,點D是AC的中點.將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與A、D重合,連接BE、EC.
試猜想線段BE和EC的數量及位置關系,并證明你的猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結論正確的個數是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜邊在x軸的正半軸上,點A與原點重合,隨著頂點A由O點出發(fā)沿y軸的正半軸方向滑動,點B也沿著x軸向點O滑動,直到與點O重合時運動結束.在這個運動過程中.
(1)AB中點P經過的路徑長_____.
(2)點C運動的路徑長是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠CAB=∠DBA,再添加一個條件,不一定能判定△ABC≌△BAD的是( 。
A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com