【題目】為了從小華和小亮兩人中選拔一人參加射擊比賽,現(xiàn)對(duì)他們的射擊水平進(jìn)行測(cè)試,兩人在相同條件下各射擊6次,命中的環(huán)數(shù)如下(單位:環(huán)):
小華:7,8,7,8,9,9; 小亮:5,8,7,8,10,10.
(1)填寫下表:
平均數(shù)(環(huán)) | 中位數(shù)(環(huán)) | 方差(環(huán)2) | |
小華 | 8 | ||
小亮 | 8 | 3 |
(2)根據(jù)以上信息,你認(rèn)為教練會(huì)選擇誰參加比賽,理由是什么?
(3)若小亮再射擊2次,分別命中7環(huán)和9環(huán),則小亮這8次射擊成績(jī)的方差 .(填“變大”、“變小”、“不變”)
【答案】(1)8,8,;(2)選擇小華參賽.(3)變小
【解析】
(1)根據(jù)方差、平均數(shù)和中位數(shù)的定義求解;
(2)根據(jù)方差的意義求解;
(3)根據(jù)方差公式求解.
(1)解:小華射擊命中的平均數(shù):=8,
小華射擊命中的方差:,
小亮射擊命中的中位數(shù):;
(2)解:∵小華=小亮,S2小華<S2小亮
∴選小華參賽更好,因?yàn)閮扇说钠骄煽?jī)相同,但小華的方差較小,說明小華的成績(jī)更穩(wěn)定,所以選擇小華參賽.
(3)解:小亮再射擊2次,分別命中7環(huán)和9環(huán),則小亮這8次射擊成績(jī)的方差變小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校一面墻前有一塊空地,校方準(zhǔn)備用長的柵欄()圍成一個(gè)一面靠墻的長方形花圍,再將長方形分割成六塊(如圖所示) ,已知,,,設(shè).
(1)用含的代數(shù)式表示: ; .
(2)當(dāng)長方形的面積等于時(shí),求的長.
(3)若在如圖的甲區(qū)域種植花卉.乙區(qū)域種柏草坪,種柏花卉的成本為每平方米100元,種被草坪的成本為每平方米50元,若種植花卉與草坪的總費(fèi)用超過6300元,求花圍的寬的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,以BC為直徑的⊙O交AC于點(diǎn)D,過點(diǎn)D作⊙O的切線交AB于點(diǎn)M,交CB延長線于點(diǎn)N,連接OM,OC=1.
(1)求證:AM=MD;
(2)填空:
①若DN,則△ABC的面積為 ;
②當(dāng)四邊形COMD為平行四邊形時(shí),∠C的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DB∥AC,且DB=AC,E是AC的中點(diǎn),
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市自開展“學(xué)習(xí)新思想,做好接班人”主題閱讀活動(dòng)以來,受到各校的廣泛關(guān)注和同學(xué)們的積極響應(yīng),某校為了解全校學(xué)生主題閱讀的情況,隨機(jī)抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計(jì)圖表.
某校抽查的學(xué)生文章閱讀的篇數(shù)統(tǒng)計(jì)表
文章閱讀的篇數(shù)(篇) | 3 | 4 | 5 | 6 | 7及以上 |
人數(shù)(人) | 20 | 28 | m | 16 | 12 |
請(qǐng)根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:
(1)求被抽查的學(xué)生人數(shù)和的值;
(2)求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);
(3)若該校共有800名學(xué)生,根據(jù)抽查結(jié)果估計(jì)該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,,,是射線上的點(diǎn),連接,將沿直線翻折得.
(1)如圖①,點(diǎn)恰好在上,求證:∽;
(2)如圖②,點(diǎn)在矩形內(nèi),連接,若,求的面積;
(3)若以點(diǎn)、、為頂點(diǎn)的三角形是直角三角形,則的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以點(diǎn)為圓心,的長為半徑作,交于點(diǎn),交的延長線于點(diǎn).過點(diǎn)作,交于點(diǎn),連接,,.
(1)求證:是的切線;
(2)填空:
①當(dāng)四邊形是周長為20的菱形時(shí), ;
②當(dāng) 時(shí),四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A,C在EF上,AD∥BC,DE∥BF,AE=CF.
(1)求證:四邊形ABCD是平行四邊形;
(2)直接寫出圖中所有相等的線段(AE=CF除外).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中有點(diǎn)和某一函數(shù)圖象,過點(diǎn)作軸的垂線,交圖象于點(diǎn),設(shè)點(diǎn),的縱坐標(biāo)分別為,.如果,那么稱點(diǎn)為圖象的上位點(diǎn);如果,那么稱點(diǎn)為圖象的圖上點(diǎn);如果,那么稱點(diǎn)為圖象的下位點(diǎn).
(1)已知拋物線.
① 在點(diǎn)A(-1,0),B(0,-2),C(2,3)中,是拋物線的上位點(diǎn)的是 ;
② 如果點(diǎn)是直線的圖上點(diǎn),且為拋物線的上位點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;
(2)將直線在直線下方的部分沿直線翻折,直線的其余部分保持不變,得到一個(gè)新的圖象,記作圖象.⊙的圓心在軸上,半徑為.如果在圖象和⊙上分別存在點(diǎn)和點(diǎn)F,使得線段EF上同時(shí)存在圖象的上位點(diǎn),圖上點(diǎn)和下位點(diǎn),求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com