如圖所示,⊙Oi和⊙O2相切于P點(diǎn),過(guò)P的直線交⊙Oi于A,交⊙O2于B,求證:OiAO2B.
證明:∵OxA=OxP,O2P=O2B,
∴∠A=∠x(chóng),∠2=∠B,
∵∠x(chóng)=∠2,
∴∠A=∠B,
∴OxAO2B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知扇形AOB,OA⊥OB,C為OB上一點(diǎn),以O(shè)A為直線的半圓O1與以BC為直徑的半圓O2相切于點(diǎn)D.
(1)若⊙O1的半徑為R,⊙O2的半徑為r,求R與r的比;
(2)若扇形的半徑為12,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,每個(gè)圓紙片的面積都是30.圓紙片A與B、B與C、C與A的重疊部分面積分別為6,8,5.三個(gè)圓紙片覆蓋的總面積為73.則三個(gè)圓紙片重疊部分的面積為_(kāi)_____,圖中陰影部分的面積為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知⊙O1和⊙O2的半徑分別為2cm和6cm,兩圓的圓心距O1O2=4cm,則⊙O1和⊙O2的位置關(guān)系為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)A、B在直線l上,AB=24cm,⊙A、⊙B的半徑開(kāi)始都為2cm,⊙A以2cm/s的速度自左向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),
自⊙A開(kāi)始運(yùn)動(dòng)時(shí),⊙B的半徑不斷增大,其半徑r(cm)與時(shí)間t之間的關(guān)系式為r=2+t.

(1)寫(xiě)出點(diǎn)A、B之間的距離y(cm)與時(shí)間t之間的函數(shù)關(guān)系式;
(2)⊙A出發(fā)后多少秒兩圓相切?
(3)當(dāng)t=4時(shí),⊙A停止向右運(yùn)動(dòng),與此同時(shí),⊙B的半徑也不再增大,記直線l與⊙B左側(cè)的交點(diǎn)為點(diǎn)C,將⊙A繞點(diǎn)C在平面內(nèi)旋轉(zhuǎn)360°.問(wèn):⊙A與⊙B能否相切?若能,請(qǐng)直接寫(xiě)出相切幾次;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在⊙O的內(nèi)接△ABC中,AB=AC,D是⊙O上一點(diǎn),AD的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)P.
(1)求證:AB2=AD•AP;
(2)若⊙O的直徑為25,AB=20,AD=15,求PC和DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

邊長(zhǎng)為2的正六邊形的邊心距為(  )
A.1B.2C.
3
D.2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若同一個(gè)圓的內(nèi)接正三角形、正方形、正六邊形的邊心距分別為r3,r4,r6,則r3:r4:r6等于(  )
A.1:
2
3
B.
3
2
:1
C.1:2:3D.3:2:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,A,B,C,D四點(diǎn)在⊙O上,四邊形ABCD的一條外角∠DCE=70°,則∠BOD等于( 。
A.35°B.70°C.110°D.140°

查看答案和解析>>

同步練習(xí)冊(cè)答案