【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E,F分別在線(xiàn)段AD及其延長(zhǎng)線(xiàn)上,且DE=DF.給出下列條件:
①BE⊥EC;②BF∥CE;③AB=AC;
從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是 (只填寫(xiě)序號(hào)).
【答案】③.
【解析】試題分析:首先利用對(duì)角線(xiàn)互相平分的四邊形是平行四邊形判定該四邊形為平行四邊形,然后結(jié)合菱形的判定得到答案即可.
解:由題意得:BD=CD,ED=FD,
∴四邊形EBFC是平行四邊形,
①BE⊥EC,根據(jù)這個(gè)條件只能得出四邊形EBFC是矩形,
②BF∥CE,根據(jù)EBFC是平行四邊形已可以得出BF∥CE,因此不能根據(jù)此條件得出菱形,
③AB=AC,
∵,
∴△ADB≌△ADC,
∴∠BAD=∠CAD
∴△AEB≌△AEC(SAS),
∴BE=CE,
∴四邊形BECF是菱形.
故答案為:③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)a,b滿(mǎn)足a+1>b+1,則下列選項(xiàng)錯(cuò)誤的為( )
A. a>b B. a+2>b+2 C. –a<–b D. 2a>3b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4cm的速度向點(diǎn)B勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)連接AQ,CP,若AQ⊥CP,求t的值;
(3)試證明:PQ的中點(diǎn)在△ABC的一條中位線(xiàn)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)度為3cm、4cm兩根木棒,與它們首尾相接能構(gòu)成三角形的第三根木棒長(zhǎng)度是( )
A. 1cm B. 5cm C. 7cm D. 9cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)多邊形的每一個(gè)外角都等于30°,那么這個(gè)多邊形的邊數(shù)為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=2cm,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,點(diǎn)E以一定的速度從A向B移動(dòng),點(diǎn)F以相同的速度從B向C移動(dòng),連結(jié)OE、OF、EF.則線(xiàn)段EF的最小值是_______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用12根火柴棒(等長(zhǎng))拼成一個(gè)三角形,火柴棒不允許剩余、重疊和折斷,能擺出的三角形的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 平移不改變圖形的形狀,旋轉(zhuǎn)使圖形的形狀發(fā)生改變
B. 平移和旋轉(zhuǎn)的共同之處是改變圖形的位置和大小
C. 一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的距離相等
D. 由旋轉(zhuǎn)得到的圖形也一定可以通過(guò)平移得到
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com