【題目】已知矩形ABCD中,AB=3,BC=4,CE平分ACB交AB于點(diǎn)E,M為CE的中點(diǎn),連結(jié)BM,將BCM繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至B′CM′,B′M′交AD于Q,延長(zhǎng)CM′交AD于P,若PQ=PM′,則PQ=

【答案】

【解析】

試題分析:首先證明四邊形ACM'Q是等腰梯形,設(shè)PQ=x,在直角CDP中,根據(jù)勾股定理即可得到關(guān)于x的方程求得x的值.

解:設(shè)PQ=x,

CE平分ACB,

∴∠BCE=ACE,且=

AB=3,BC=4,

AC=5,

,

BE=,AE=,

CE=,

CM=

M是CE的中點(diǎn),且BCE是直角三角形,

BM=CM=EM,

∴∠CBM=BCM=ACE,

B'CM'BCM旋轉(zhuǎn)得到,

∴△B'CM'≌△BCM

PQ=P'M,

∴∠PM'Q=PQM'=2B'CM'=ACB

四邊形ABCD是矩形,

ADBC,

∴∠ACB=CAD

∴∠PQM'=CAD,

ACB'M',

∴∠PM'Q=ACP,

∴∠CAD=ACP,

四邊形ACM'Q是等腰梯形,

AQ=CM'=

PD=+x,

在直角CDP中,根據(jù)勾股定理得:CP2=PD2+CD2

+x)2=(4﹣﹣x)2+9,另t=+x,則t2=(4﹣t)2+9,

t=

+x=,

x=,

PQ=

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是(

A.若兩弦相等,則它們所對(duì)的弧相等

B.若弦長(zhǎng)等于半徑,則弦所對(duì)的劣弧的度數(shù)為60°

C.若兩弧不等,則大弧所對(duì)的圓心角較大

D.若兩弧的度數(shù)相等,則兩條弧是等弧

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCDEF中,下列各組條件中,不能判定兩個(gè)三角形全等的是(

A. AB = DEB =E,C =F B. AC = DF,BC = EF,A =D

C. AB = EFA =E,B =F D. A =F,B =E,BC = DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,菱形ABCD的四個(gè)頂點(diǎn)均在坐標(biāo)軸上,對(duì)角線AC、BD交于原點(diǎn)O,DFAB交AC于點(diǎn)G,反比例函數(shù)y=(x>0)經(jīng)過(guò)線段DC的中點(diǎn)E,若BD=4,則AG的長(zhǎng)為( )

A. B.+2 C.2+1 D.+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)正多邊形的一個(gè)外角是36°,那么該正多邊形的邊數(shù)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把直角ABC的斜邊AC放在定直線l上,按順時(shí)針的方向在直線l上轉(zhuǎn)動(dòng)兩次,使它轉(zhuǎn)到A2B2C2的位置,設(shè)AB=,BC=1,則頂點(diǎn)A運(yùn)動(dòng)到點(diǎn)A2的位置時(shí),點(diǎn)A所經(jīng)過(guò)的路線為( )

A.(+)π B.(+)π C.2π D.π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=kx+b,當(dāng)-3≤x≤1時(shí),對(duì)應(yīng)的函數(shù)值的取值范圍為1≤y≤9,求k+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于A-2,0,B6,0兩點(diǎn)

1求該拋物線的解析式;

2求該拋物線的對(duì)稱軸以及頂點(diǎn)坐標(biāo);

3點(diǎn)P為y軸右側(cè)拋物線上一個(gè)動(dòng)點(diǎn),若SPAB=32,求出此時(shí)P點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列分解因式正確的是( 。

A. mam=﹣m(a﹣1) B. a2﹣1=(a﹣1)2

C. a2﹣6a+9=(a﹣3)2 D. a2+2a+4=(a+2)2

查看答案和解析>>

同步練習(xí)冊(cè)答案