某調(diào)查小組采用簡單隨機(jī)抽樣方法,對某市部分中小學(xué)生一天中陽光體育運動時間進(jìn)行了抽樣調(diào)查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計圖:

⑴該調(diào)查小組抽取的樣本容量是多少?

⑵求樣本學(xué)生中陽光體育運動時間為1.5小時的人數(shù),并補(bǔ)全占頻數(shù)分布直方圖;

⑶請估計該市中小學(xué)生一天中陽光體育運動的平均時間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,△ABC中,BD平分∠ABC,BC的中垂線交BC于點E,交BD于點F,連接CF.若∠A=60°,∠ABD=24°,則∠ACF的度數(shù)為( 。

 

A.

48°

B.

36°

C.

30°

D.

24°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知:如圖,在矩形ABCD中,點E、F在邊AD上,且AE=DF,求證:BF=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


太陽的半徑約為696000km,把696000這個數(shù)用科學(xué)記數(shù)法表示為_______________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


數(shù)學(xué)家歌德巴赫通過研究下面一系列等式,作出了一個著名的猜想.

4=2+2;      12=5+7;

6=3+3;      14=3+11=7+7;

8=3+5;      16=3+13=5+11;

10=3+7=5+5   18=5+13=7+11;

                …

通過這組等式,你發(fā)現(xiàn)的規(guī)律是_______________________________________(請用文字語言表達(dá)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


設(shè)ω是一個平面圖形,如果用直尺和圓規(guī)經(jīng)過有限步作圖(簡稱尺規(guī)作圖),畫出一個正方形與ω的面積相等(簡稱等積),那么這樣的等積轉(zhuǎn)化稱為ω的“化方”.

⑴閱讀填空

如圖①,已知矩形ABCD,延長ADE,使DEDC,以AE為直徑作半圓.延長CD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積.

理由:連接AH,EH

∵ AE為直徑  ∴ ∠AHE=90°  ∴ ∠HAE+∠HEA=90°.

∵ DHAE  ∴ ∠ADH=∠EDH=90°

∴ ∠HAD+∠AHD=90°

∴ ∠AHD=∠HED  ∴ △ADH∽_____________.

∴ ,即AD×DE

又∵ DEDC  ∴ =____________,即正方形DFGH與矩形ABCD等積.

⑵操作實踐

平行四邊形的“化方”思路是,先把平行四邊形轉(zhuǎn)化為等積的矩形,再把矩形轉(zhuǎn)化為等積的正方形.

如圖②,請用尺規(guī)作圖作出與□ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡).

⑶解決問題

三角形的“化方”思路是:先把三角形轉(zhuǎn)化為等積的_________________(填寫圖形名稱),再轉(zhuǎn)化為等積的正方形.

如圖③,△ABC的頂點在正方形網(wǎng)格的格點上,請作出與△ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計算△ABC面積作圖).

⑷拓展探究

n邊形(n>3)的“化方”思路之一是:把n邊形轉(zhuǎn)化為等積的n-1邊形,…,直至轉(zhuǎn)化為等積的三角形,從而可以化方.

如圖④,四邊形ABCD的頂點在正方形網(wǎng)格的格點上,請作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計算四邊形ABCD面積作圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列四個命題中,真命題是( 。

 

A.

“任意四邊形內(nèi)角和為360°”是不可能事件

 

B.

“湘潭市明天會下雨”是必然事件

 

C.

“預(yù)計本題的正確率是95%”表示100位考生中一定有95人做對

 

D.

拋擲一枚質(zhì)地均勻的硬幣,正面朝上的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,在Rt△ABC中,∠C=90°,△ACD沿AD折疊,使得點C落在斜邊AB上的點E處.

1)求證:△BDE∽△BAC;

(2)已知AC=6,BC=8,求線段AD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(﹣1,0),下列結(jié)論:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正確結(jié)論的個數(shù)是(  )

 

A.

1

B.

2

C.

3

D.

4

查看答案和解析>>

同步練習(xí)冊答案