【題目】在△ABC中,BC6,SABC18,正方形DEFG的邊FGBC上,頂點(diǎn)DE分別在AB,AC上.

1)如圖1,過點(diǎn)AAHBC于點(diǎn)H,交DE于點(diǎn)K,求正方形DEFG的邊長;

2)如圖2,在BE上取點(diǎn)M,作MNBC于點(diǎn)N,MQDEAB于點(diǎn)Q,QPBC于點(diǎn)P,求證:四邊形MNPQ是正方形;

3)如圖3,在BE上取點(diǎn)R,使REFE,連結(jié)RG,RF,若tanEBF.求證:∠GRF90°

【答案】13;(2)見解析;(3)見解析

【解析】

1)如圖1中,設(shè)正方形DEFG的邊長為x.利用相似三角形的對應(yīng)高的比等于相似比構(gòu)建方程即可解決問題.

2)利用平行線分線段成比例定理證明MNMQ,再證明四邊形MNPQ是平行四邊形即可解決問題.

3)設(shè)EFGF3k,BF4k,則BGkBE5k,可得BR2BGBF4k2,推出,推出△RBG∽△FBR,推出∠BRG=∠RFB,再證明∠ERF+BRG90°可得結(jié)論.

解:(1)如圖1中,設(shè)正方形DEFG的邊長為x

AHBC,

SABCBCAH18,

×6×AH18,

AH6,

∵四邊形DEFG是正方形,

DEBC,

∴△ADE∽△ABC,

,

,

x3,

∴正方形DEFG的邊長為3

2)證明:如圖2中,

MNBC,四邊形DEFG是正方形,

∴∠MNB=∠EFB90°,DEEF

MNEF,

,

MQDE,

,

,

MNMQ

QPBC,MNBC,

QPMN,

MQDEDEBC,

QMPN

∴四邊形MNPQ是平行四邊形,

∵∠MNP90°,

∴四邊形MNPQ是矩形,

MNMQ,

∴四邊形MNPQ是正方形.

3)證明:如圖3中,

RtEBF中,∵tanEBF,

∴可以假設(shè)EFGF3k,BF4k,則BGk,BE5k,

EREF3k,

BRBEER2k,

BR2BGBF4k2

,

∵∠RBG=∠RBF,

∴△RBG∽△FBR,

∴∠BRG=∠RFB,

EREF,

∴∠ERF=∠EFR,

∵∠EFR+BFR90°

∴∠ERF+BRG90°,

∴∠FRG90°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E、F分別在線段BCDC上,線段AE繞點(diǎn)A逆時針旋轉(zhuǎn)后與線段AF重合.若,則旋轉(zhuǎn)的角度是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在中,分別在邊的中點(diǎn),是對角線,過點(diǎn),交的延長線于

1)求證:四邊形是平行四邊形;

2)若四邊形是矩形,則四邊形是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在半圓O中,AB為直徑,ACAD為兩條弦,且∠CAD+CAB90°.

1)如圖1,求證:弧AC等于弧CD

2)如圖2,點(diǎn)E在直徑AB上,CEAD于點(diǎn)F,若AFCF,求證:AD2CE;

3)如圖3,在(2)的條件下,連接BD,若AE4,BD12,求弦AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為早日實現(xiàn)脫貧奔小康的宏偉目標(biāo),我市結(jié)合本地豐富的山水資源,大力發(fā)展旅游業(yè),王家莊在當(dāng)?shù)卣闹С窒,辦起了民宿合作社,專門接待游客,合作社共有80間客房.根據(jù)合作社提供的房間單價x(元)和游客居住房間數(shù)y(間)的信息,樂樂繪制出y與x的函數(shù)圖象如圖所示:

(1)求y與x之間的函數(shù)關(guān)系式;

(2)合作社規(guī)定每個房間價格不低于60元且不超過150元,對于游客所居住的每個房間,合作社每天需支出20元的各種費(fèi)用,房價定為多少時,合作社每天獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB6,點(diǎn)E在對角線BD上,DE2,連接CE,過點(diǎn)EEFCE,交線段AB于點(diǎn)F

1)求證:CEEF;

2)求FB的長;

3)連接FCBD于點(diǎn)G.求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為了了解當(dāng)年春游時學(xué)生的個人消費(fèi)情況,從其中一所學(xué)校的初三年級中隨機(jī)抽取了部分學(xué)生春游消費(fèi)情況進(jìn)行調(diào)查,并將這部分學(xué)生的消費(fèi)額繪制成頻率分布直方圖.已知從左至右第一組的人數(shù)為12名.請根據(jù)所給的信息回答:

1)被抽取調(diào)查的學(xué)生人數(shù)為 名;

2)從左至右第五組的頻率是 ;

3)假設(shè)每組的平均消費(fèi)額以該組的最小值計算,那么被抽取學(xué)生春游的最低平均消費(fèi)額為 元;

4)以第(3)小題所求得的最低平均消費(fèi)額來估計該地區(qū)全體學(xué)生春游的最低平均消費(fèi)額,你認(rèn)為是否合理?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y的圖象經(jīng)過點(diǎn)P3,4).

1)求k的值;

2)求OP的長;

3)直線ymxm≠0)與反比例函數(shù)的圖象有兩個交點(diǎn)A,B,若AB10,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解初中學(xué)生每天在校體育活動的時間(單位:h),隨機(jī)調(diào)査了該校的部分初中學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計圖1和圖2.請根據(jù)相關(guān)信息,解答下列問題:

(Ⅰ)本次接受調(diào)查的初中學(xué)生人數(shù)為   ,圖1m的值為   ;

(Ⅱ)求統(tǒng)計的這組每天在校體育活動時間數(shù)據(jù)的眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)統(tǒng)計的這組每天在校體育活動時間的樣本數(shù)據(jù),若該校共有1200名初中學(xué)生,估計該校每天在校體育活動時間大于1h的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案