(2013•廣安)如圖,已知半徑OD與弦AB互相垂直,垂足為點C,若AB=8cm,CD=3cm,則圓O的半徑為( 。
分析:連接AO,根據(jù)垂徑定理可知AC=
1
2
AB=4cm,設半徑為x,則OC=x-3,根據(jù)勾股定理即可求得x的值.
解答:解:連接AO,
∵半徑OD與弦AB互相垂直,
∴AC=
1
2
AB=4cm,
設半徑為x,則OC=x-3,
在Rt△ACO中,AO2=AC2+OC2,
即x2=42+(x-3)2,
解得:x=
25
6
,
故半徑為
25
6
cm.
故選A.
點評:本題考查了垂徑定理及勾股定理的知識,解答本題的關鍵是熟練掌握垂徑定理、勾股定理的內容,難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•廣安)如圖,如果從半徑為5cm的圓形紙片上剪去
15
圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高是
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廣安)如圖,若∠1=40°,∠2=40°,∠3=116°30′,則∠4=
63°30′
63°30′

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廣安)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙0,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.
(1)求證:EF是⊙0的切線.
(2)如果⊙0的半徑為5,sin∠ADE=
45
,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廣安)如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點,已知點A(-3,0),B(0,3),C(1,0).
(1)求此拋物線的解析式.
(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.
①動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標;
②連接PA,以AP為邊作圖示一側的正方形APMN,隨著點P的運動,正方形的大小、位置也隨之改變.當頂點M或N恰好落在拋物線對稱軸上時,求出對應的P點的坐標.(結果保留根號)

查看答案和解析>>

同步練習冊答案