8.先化簡,再求值:$\frac{1}{2}$x-2(x-$\frac{1}{3}$y2)+(-$\frac{3}{2}$x+$\frac{1}{3}$y2),其中x=2,y=$\sqrt{6}$.

分析 原式去括號合并得到最簡結(jié)果,把x與y的值代入計算即可求出值.

解答 解:原式=$\frac{1}{2}$x-2x+$\frac{2}{3}$y2-$\frac{3}{2}$x+$\frac{1}{3}$y2=-3x+y2,
當(dāng)x=2,y=$\sqrt{6}$時,原式=-6+6=0.

點評 此題考查了整式的加減-化簡求值,熟練掌握運算法則是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.化簡求值:
(1)已知:x=$\frac{2}{{\sqrt{3}-1}}$,求x2-x+1的值.
(2)已知:a=$\frac{{2-\sqrt{3}}}{{2+\sqrt{3}}}$,b=$\frac{{2+\sqrt{3}}}{{2-\sqrt{3}}}$,求:$\sqrt{{a^2}+4ab+{b^2}}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.先化簡,再求值:$(\frac{1}{x-y}+\frac{1}{x+y})÷\frac{xy}{{{x^2}-{y^2}}}$,其中x=2014,y=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.已知,拋物線y=ax2+bx+3經(jīng)過(-3,0),(-1,0).
(1)求拋物線的解析式;        
(2)求這個函數(shù)的最大或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.下列各式中,正確的是(  )
A.2a+3b=5abB.7ab-3ab=4C.x2y-2x2y=-x2yD.a3+a2=a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.先化簡,再求值:(1-$\frac{1}{a+1}$)÷$\frac{{a}^{2}-a}{a+1}$,其中a=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.直線y=(m-2)x+5中,y隨x的增大而減小,則m的取值范圍是m<2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.在式子2ab,$\frac{{m{n^2}+2m}}{3}$,x,$\frac{y+z}{x}$,0,5π,-$\frac{2πpq}{3}$中單項式有( 。
A.6個B.5個C.4個D.3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.點E、F分別在一張長方形紙條ABCD的邊AD、BC上,將這張紙條沿著直線EF對折后如圖,BF與DE交于點G,如果∠BGD=30°,長方形紙條的寬AB=3cm,那么這張紙條對折后的重疊部分面積S△GEF=9cm2

查看答案和解析>>

同步練習(xí)冊答案