(本小題滿分12分)已知某種水果的批發(fā)單價與批發(fā)量的函數(shù)關系如圖1所示.

(1)請說明圖中①、②兩段函數(shù)圖象的實際意義.

(2)寫出批發(fā)該種水果的資金金額w(元)與批發(fā)量m(kg)之間的函數(shù)關系式;在上圖的坐標系中畫出該函數(shù)圖象;指出金額在什么范圍內,以同樣的資金可以批發(fā)到較多數(shù)量的該種水果.

(3)經(jīng)調查,某經(jīng)銷商銷售該種水果的日最高銷量與零售價之間的函數(shù)關系如圖(2)所示,該經(jīng)銷商以每日售出60kg以上該種水果,且當日零售價不變,請你幫助該經(jīng)銷商設計進貨和銷售的方案,使得當日獲得的利潤最大.

 

解:((1)解:圖①表示批發(fā)量不少于20kg且不多于60kg的該種水果,

可按5元/kg批發(fā);

圖②表示批發(fā)量高于60kg的該種水果,可按4元/kg批發(fā).

(2)解:由題意得:,函圖像如圖所示.

由圖可知資金金額滿足240<w≤300時,以同樣的資金可

批發(fā)到較多數(shù)量的該種水果.

(3)解法一:

設當日零售價為x元,由圖可得日最高銷量

當m>60時,x<6.5

由題意,銷售利潤為

當x=6時,

此時m=80

即經(jīng)銷商應批發(fā)80kg該種水果,日零售價定為6元/kg,

當日可獲得最大利潤160元.

解法二:

設日最高銷售量為xkg(x>60)

則由圖②日零售價p滿足:,于是

銷售利潤當x=80時,,此時p=6

即經(jīng)銷商應批發(fā)80kg該種水果,日零售價定為6元/kg,

當日可獲得最大利潤160元.

解析:略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011-2012學年九年級第二次模擬考試數(shù)學卷 題型:解答題

(本小題滿分12分)

如圖,反比例函數(shù)的圖象經(jīng)過A、B兩點,根據(jù)圖中信息解答下列問題:

1.(1)寫出A點的坐標;

2.(2)求反比例函數(shù)的解析式;

3.(3)若點A繞坐標原點O旋轉90°后得到點C,請寫出點C的坐標;并求出直線BC的解析式.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學卷 題型:解答題

(本小題滿分12分)

如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△EFD繞點A 順時針旋轉,當DF邊與AB邊重合時,旋轉中止。不考慮旋轉開始和結束時重合的情況,設DE、DF(或它們的延長線)分別交BC(或它的延長線)于G、H點,如圖(2)。

1.(1)問:始終與△AGC相似的三角形有                ;

2.(2)設CG=x,BH=y(tǒng),求y關于x的函數(shù)關系式(只要求根據(jù)2的情況說明理由);

3.(3)問:當x為何值時,△AGH是等腰三角形?

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學卷 題型:解答題

(本小題滿分12分)某班同學到野外活動,為測量一池塘兩端A、B的距離,設計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:

1.(1)方案(I)是否可行?為什么?

2.(2)方案(II)是否切實可行?為什么?

3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是            ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?

4.(4)方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是         ,若ED=m,則AB=      。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年江蘇GSJY八年級第二次學情調研考試數(shù)學卷 題型:解答題

  (本小題滿分12分)

 1. (1)觀察發(fā)現(xiàn)

    如(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最。

    做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P

    再如(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。

做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為        . (2分)

        

 

2.(2)實踐運用

   如圖,菱形ABCD的兩條對角線分別長6和8,點P是對角線AC上的一個動點,點M、N分別是邊AB、BC的中點,求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.  (5分)

 

查看答案和解析>>

科目:初中數(shù)學 來源:2014屆湖北省孝感市七年級下學期期中考試數(shù)學卷 題型:解答題

.(本小題滿分12分)

如圖,AD為△ABC的中線,BE為△ABD的中線。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);

(2)在△BED中作BD邊上的高;

(3)若△ABC的面積為40,BD=5,則△BDEBD邊上的高為多少?

 

查看答案和解析>>

同步練習冊答案