【題目】如圖,在菱形ABCD中,邊長為10,∠A=60°.順次連結菱形ABCD各邊中點,可得四邊形A1B1C1D1;順次連結四邊形A1B1C1D1各邊中點,可得四邊形A2B2C2D2;順次連結四邊形A2B2C2D2各邊中點,可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去….則四邊形A2B2C2D2的周長是;四邊形A2013B2013C2013D2013的周長是

【答案】20;
【解析】解:∵菱形ABCD中,邊長為10,∠A=60°,順次連結菱形ABCD各邊中點, ∴△AA1D1是等邊三角形,四邊形A2B2C2D2是菱形,
∴A1D1=5,C1D1= AC=5 ,A2B2=C2D2=C2B2=A2D2=5,
∴四邊形A2B2C2D2的周長是:5×4=20,
同理可得出:A3D3=5× ,C3D3= C1D1= ×5 ,
A5D5=5×( 2 , C5D5= C3D3=( 2×5 ,

∴四邊形A2013B2013C2013D2013的周長是: =
故答案為:20;
根據(jù)菱形的性質(zhì)以及三角形中位線的性質(zhì)以及勾股定理求出四邊形各邊長得出規(guī)律求出即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有一學校為了解九年級學生某次體育測試成績,現(xiàn)對這次體育測試成績進行抽樣調(diào)查,結果統(tǒng)計如下,其中扇形統(tǒng)計圖中C組所在的扇形的圓心角為36° 被抽取的體育測試成績頻數(shù)分布表

組別

成績

頻數(shù)

A

20<x≤24

2

B

24<x≤28

3

C

28<x≤32

5

D

32<x≤36

b

E

36<x≤40

20

合計

a

根據(jù)上面的圖表提供的信息,回答下列問題:

(1)計算頻數(shù)分布表中a與b的值;
(2)根據(jù)C組28<x≤32的組中值30,估計C組中所有數(shù)據(jù)的和為;
(3)請估計該校九年級學生這次體育測試成績的平均分(結果取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=120°,點D是BC的中點,點E是AB上的一點,點F是AC上的一點,∠EDF=90°,且BE=2,F(xiàn)C=7,則EF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛公交車從A站出發(fā)勻速開往B站.在行駛時間相同的前提下,如果車速是60千米/小時,就會超過B0.2千米;如果車速是50千米/小時,就還需行駛0.8千米才能到達B站.

(1)求A站和B站相距多少千米?行駛時間是多少?如果要在行駛時間點恰好到達B站,行駛的速度是多少?

(2)圖①是這輛公交車線路的收支差額y(票價總收入減去運營成本)與乘客數(shù)量的函數(shù)圖象.目前這條線路虧損,為了扭虧,有關部門舉行了提高票價的聽證會.乘客代表認為:公交公司應節(jié)約能源,改善管理,降低運營成本,以此舉實現(xiàn)扭虧.公交公司認為:運營成本難以下降,公司己盡力,提高票價才能扭虧.根據(jù)這兩種意見,可以把圖①分別改畫成圖②和圖③

(a)說明圖①中點A和點B的實際意義;

(b)你認為圖②和圖③兩個圖象中,反映乘客意見的是   ,反映公交公司意見的是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)y1=﹣x+4的圖象與函數(shù)y2= (x>0)的圖象交于A(a,1)、B(1,b)兩點.
(1)求函數(shù)y2的表達式;
(2)觀察圖象,比較當x>0時,y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程或方程組解應用題:

某校初二年級的同學乘坐大巴車去北京展覽館參觀“砥礪奮進的五年”大型成就展,北京展覽館距離該校12千米,1號車出發(fā)3分鐘后,2號車才出發(fā),結果兩車同時到達,已知2號車的平均速度是1號車的平均速度的1.2倍,求2號車的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AE是半圓O的直徑,弦AB=BC=4 ,弦CD=DE=4,連結OB,OD,則圖中兩個陰影部分的面積和為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=4,BC=8,將紙片沿EF折疊,使點C與點A重合,則下列結論錯誤的是(
A.AF=AE
B.△ABE≌△AGF
C.EF=2
D.AF=EF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程m1x2+ x+1=0的兩根分別為x1 , x2 , 一元二次方程m2x2+ x+1=0的兩根為x3 , x4 , 若x1<x3<x4<x2<0,則m1 , m2的大小關系為(
A.0>m1>m2
B.0>m2>m1
C.m2>m1>0
D.m1>m2>0

查看答案和解析>>

同步練習冊答案