一家鞋店在一段時(shí)間內(nèi)銷售了某種女鞋30雙,各種尺碼的銷售量如下表所示,你認(rèn)為商家更應(yīng)該關(guān)注鞋子尺碼的( )
尺碼/cm | 22 | 22.5 | 23 | 23.5 | 24 | 24.5 | 25 |
銷售量/雙 | 4 | 6 | 6 | 10 | 2 | 1 | 1 |
A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
某小組5名同學(xué)在一周內(nèi)參加家務(wù)勞動的時(shí)間如下表所示,關(guān)于“勞動時(shí)間”的這組數(shù)據(jù),以下說法正確的是21·cn·jy·com
勞動時(shí)間(小時(shí)) | 3 | 3.5 | 4 | 4.5 |
人 數(shù) | 1 | 1 | 2 | 1 |
A.中位數(shù)是4,平均數(shù)是3.75 B.眾數(shù)是4,平均數(shù)是3.75
C.中位數(shù)是4,平均數(shù)是3.8 D.眾數(shù)是2,平均數(shù)是3.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
問題背景:已知在△ABC中,AB邊上的動點(diǎn)D由A向B運(yùn)動(與A,B不重合),點(diǎn)E與點(diǎn)D同時(shí)出發(fā),由點(diǎn)C沿BC的延長線方向運(yùn)動(E不與C重合),連結(jié)DE交AC于點(diǎn)F,點(diǎn)H是線段AF上一點(diǎn)
1) 初步嘗試:如圖1,若△ABC是等邊三角形,DH⊥AC,且點(diǎn)D,E的運(yùn)動速度相等,求證:HF=AH+CF
小王同學(xué)發(fā)現(xiàn)可以由以下兩種思路解決此問題:
思路一:過點(diǎn)D作DG∥BC,交AC于點(diǎn)G,先證GH=AH,再證GF=CF,從而證得結(jié)論成立
思路二:過點(diǎn)E作EM⊥AC,交AC的延長線于點(diǎn)M,先證CM=AH,再證HF=MF,從而證得結(jié)論成立
請你任選一種思路,完整地書寫本小題的證明過程(如用兩種方法作答,則以第一種方法評分)
2) 類比探究:如圖2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且點(diǎn)D,E的運(yùn)動速度之比是:1,求的值
3) 延伸拓展:如圖3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,記=m,且點(diǎn)D、E的運(yùn)動速度相等,試用含m的代數(shù)式表示(直接寫出結(jié)果,不必寫解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖6,直線l上有一點(diǎn)P1(2,1),將點(diǎn)P1先向右平移1個(gè)單位,再向上平移2個(gè)單位得到像點(diǎn)P2,點(diǎn)P2恰好在直線l上.
(1)寫出點(diǎn)P2的坐標(biāo);
(2)求直線l所表示的一次函數(shù)的表達(dá)式;
(3)若將點(diǎn)P2先向右平移3個(gè)單位,再向上平移6個(gè)單位得到像點(diǎn)P3.請判斷點(diǎn)P3是否在直線l上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
長沙紅星大市場某種高端品牌的家用電器,若按標(biāo)價(jià)打八折銷售該電器一件,則可獲純利潤500元,其利潤率為20%,現(xiàn)如果按同一標(biāo)價(jià)打九折銷售該電器一件,那么獲得的純利潤為( )
A.562.5元 B.875元 C.550元 D.750元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
設(shè)二次函數(shù)y1=a(x−x1)(x−x2)(a≠0,x1≠x2)的圖象與一次函數(shù)y2=dx+e(d≠0)的圖象交于點(diǎn)(x1,0),若函數(shù)y=y2+y1的圖象與x軸僅有一個(gè)交點(diǎn),則( )
A. a(x1−x2)=d B. a(x2−x1)=d C. a(x1−x2)2=d D. a(x1+x2)2=d
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax 2-2ax-3a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),經(jīng)過點(diǎn)A的直線l:y=kx+b與y軸負(fù)半軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,且CD=4AC.
(1)直接寫出點(diǎn)A的坐標(biāo),并求直線l的函數(shù)表達(dá)式(其中k、b用含a的式子表示);
(2)點(diǎn)E是直線l上方的拋物線上的動點(diǎn),若△ACE的面積的最大值為 ,求a的值;
(3)設(shè)P是拋物線的對稱軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)A、D、P、Q為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com