如圖,在平面直角坐標(biāo)系中,點(diǎn)C(-3,0),點(diǎn)A、B分別在x軸,y軸的正半軸上,且滿(mǎn)足.
【小題1】求點(diǎn)A、B坐標(biāo)
【小題2】若點(diǎn)P從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿射線(xiàn)CB運(yùn)動(dòng),連接AP。設(shè)△ABP面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍
【小題3】在(2)的條件下,是否存在點(diǎn)P,使以點(diǎn)A、B、P為頂點(diǎn)的三角形與△AOB相似?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。(本題滿(mǎn)分8分)

【小題1】A(1,0)  B(0,) -----------2分
【小題2】=2-t  (0≤t≤) -----------4分
=t-  (t>) -----------6分
【小題3】P(-3,0), (-1,), (1,), (3, ) -----------8分
(答對(duì)1個(gè)得0.5分)解析:

解:
(1)∵
∴OB2-3=0,OA-1=0.
∴OB= ,OA=1.
點(diǎn)A,點(diǎn)B分別在x軸,y軸的正半軸上,
∴A(1,0),B(0, ).
(2)由(1),得AC=4,=12+()2=2,=()2+(3)2=2,
∴AB2+BC2=22+(2 )2=16=AC2
∴△ABC為直角三角形,∠ABC=90°.設(shè)CP=t,過(guò)P作PQ⊥CA于Q,由△CPQ∽△CBO,易得PQ=
∴S=S△ABC-S△APC= ×4×-×4×= 2-t(0≤t< 23).
(3)P(-3,0), (-1,), (1,), (3, )
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線(xiàn)段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線(xiàn)CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線(xiàn)CP把梯形OABC的面積分成相等的兩部分時(shí),求直線(xiàn)CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案