【題目】如圖,在△ABC中,AB=AC=5,sinC=,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ADE,點(diǎn)B、C分別與點(diǎn)D、E對(duì)應(yīng),AD與邊BC交于點(diǎn)F.如果AE∥BC,那么BF的長(zhǎng)是____.
【答案】
【解析】
如圖,過(guò)A作AH⊥BC于H,得到∠AHB=∠AHC=90°,BH=CH,根據(jù)三角函數(shù)的定義得到AH=3,求得CH=BH4,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BAF=∠CAE,根據(jù)平行線的性質(zhì)得到∠CAE=∠C,從而得到∠BAF=∠B,由等角對(duì)等邊得到AF=BF,設(shè)AF=BF=x,得到FH=4﹣x,根據(jù)勾股定理即可得到結(jié)論.
如圖,過(guò)A作AH⊥BC于H,∴∠AHB=∠AHC=90°,BH=CH.
∵AB=AC=5,sinC,∴AH=3,∴CH=BH4.
∵將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ADE,∴∠BAF=∠CAE.
∵AE∥BC,∴∠CAE=∠C.
∵∠B=∠C,∴∠BAF=∠B,∴AF=BF,設(shè)AF=BF=x,∴FH=4﹣x.
∵AF2=AH2+FH2,∴x2=32+(4﹣x)2,解得:x,∴BF.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)長(zhǎng)方體形的木柜放在墻角處(與墻面和地面均沒(méi)有縫隙),有一只螞蟻從柜角A處沿著木柜表面爬到柜角C1處.
(1)請(qǐng)你在備用圖中畫出螞蟻能夠最快到達(dá)目的地的可能路徑;
(2)當(dāng)AB=4,BC=4,CC1=5時(shí),求螞蟻爬過(guò)的最短路徑的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在和中,,,.
如圖1,點(diǎn)D在BC上,求證:,.
將圖1中的繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)到圖2所示的位置,旋轉(zhuǎn)角為為銳角,線段DE,AE,BD的中點(diǎn)分別為P,M,N,連接PM,PN.
請(qǐng)直接寫出線段PM,PN之間的關(guān)系,不需證明;
若,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2﹣2x﹣3的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,則下列說(shuō)法錯(cuò)誤的是( 。
A. AB=4
B. ∠ABC=45°
C. 當(dāng)x>0時(shí),y<﹣3
D. 當(dāng)x>1時(shí),y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知京潤(rùn)生物制品廠生產(chǎn)某種產(chǎn)品的年產(chǎn)量不超過(guò)800噸,生產(chǎn)該產(chǎn)品每噸所需相關(guān)費(fèi)為10萬(wàn)元,且生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完.產(chǎn)品每噸售價(jià)y(萬(wàn)元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系如圖所示
(1)當(dāng)該產(chǎn)品年產(chǎn)量為多少噸時(shí),當(dāng)年可獲得7500萬(wàn)元毛利潤(rùn)?(毛利潤(rùn)=銷售額﹣相關(guān)費(fèi)用)
(2)當(dāng)該產(chǎn)品年產(chǎn)量為多少噸時(shí),該廠能獲得當(dāng)年銷售的是大毛利潤(rùn)?最大毛利潤(rùn)多少萬(wàn)元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,AB=2CD=6,E是邊BC上一點(diǎn),過(guò)點(diǎn)D、E分別作BC、CD的平行線交于點(diǎn)F,聯(lián)結(jié)AF并延長(zhǎng),與射線DC交于點(diǎn)G.
(1)當(dāng)點(diǎn)G與點(diǎn)C重合時(shí),求CE:BE的值;
(2)當(dāng)點(diǎn)G在邊CD上時(shí),設(shè)CE=m,求△DFG的面積;(用含m的代數(shù)式表示)
(3)當(dāng)△AFD∽△ADG時(shí),求∠DAG的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹BC的高度,他們?cè)谛逼?/span>AF上的D處測(cè)得大樹頂端B的仰角是30°,在地面上A處測(cè)得大樹頂端B的仰角是45°.若坡角∠FAE=30°,AD=6m,求大樹的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量?jī)蓚(gè)路燈之間的距離,小明在夜晚由路燈AB走向路燈CD,當(dāng)他走到點(diǎn)E時(shí),發(fā)現(xiàn)身后他頭頂部F的影子剛好接觸到路燈AB的底部A處,當(dāng)他向前再步行15m到達(dá)G點(diǎn)時(shí),發(fā)現(xiàn)身前他頭頂部H的影子剛好接觸到路燈CD的底部C處,已知小明同學(xué)的身高是1.7m,兩個(gè)路燈的高度都是8.5米,則AC=_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是△ABC的角平分線,點(diǎn)E、F分別在BC、AB上,且DE∥AB,∠DEF=∠A,EF與BD相交于點(diǎn)M,以下結(jié)論:①△BDE是等腰三角形;②四邊形AFED是菱形;③BE=AF;④若AF∶BF=3∶4,則△DEM的面積:△BAD的面積=9∶49,以上結(jié)論正確的是( )
A. ①②③④
B. ①③④
C. ①③
D. ③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com