【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長(zhǎng)AP交CD于F點(diǎn),連結(jié)CP并延長(zhǎng)CP交AD于Q點(diǎn).給出以下結(jié)論:
①四邊形AECF為平行四邊形;
②∠PBA=∠APQ;
③△FPC為等腰三角形;
④△APB≌△EPC.
其中正確結(jié)論的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】①根據(jù)三角形內(nèi)角和為180°易證∠PAB+∠PBA=90°,易證四邊形AECF是平行四邊形,即可解題;
②根據(jù)平角定義得:∠APQ+∠BPC=90°,由正方形可知每個(gè)內(nèi)角都是直角,再由同角的余角相等,即可解題;
③根據(jù)平行線和翻折的性質(zhì)得:∠FPC=∠PCE=∠BCE,∠FPC≠∠FCP,且∠PFC是鈍角,△FPC不一定為等腰三角形;
④當(dāng)BP=AD或△BPC是等邊三角形時(shí),△APB≌△FDA,即可解題.
①如圖,EC,BP交于點(diǎn)G;
∵點(diǎn)P是點(diǎn)B關(guān)于直線EC的對(duì)稱點(diǎn),
∴EC垂直平分BP,
∴EP=EB,
∴∠EBP=∠EPB,
∵點(diǎn)E為AB中點(diǎn),
∴AE=EB,
∴AE=EP,
∴∠PAB=∠PBA,
∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,
∴∠PAB+∠PBA=90°,
∴AP⊥BP,
∴AF∥EC;
∵AE∥CF,
∴四邊形AECF是平行四邊形,
故①正確;
②∵∠APB=90°,
∴∠APQ+∠BPC=90°,
由折疊得:BC=PC,
∴∠BPC=∠PBC,
∵四邊形ABCD是正方形,
∴∠ABC=∠ABP+∠PBC=90°,
∴∠ABP=∠APQ,
故②正確;
③∵AF∥EC,
∴∠FPC=∠PCE=∠BCE,
∵∠PFC是鈍角,
當(dāng)△BPC是等邊三角形,即∠BCE=30°時(shí),才有∠FPC=∠FCP,
如右圖,△PCF不一定是等腰三角形,
故③不正確;
④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,
∴Rt△EPC≌△FDA(HL),
∵∠ADF=∠APB=90°,∠FAD=∠ABP,
當(dāng)BP=AD或△BPC是等邊三角形時(shí),△APB≌△FDA,
∴△APB≌△EPC,
故④不正確;
其中正確結(jié)論有①②,2個(gè),
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點(diǎn)A(m,3)、B(﹣6,n),與x軸交于點(diǎn)C.
(1)求一次函數(shù)y=kx+b的關(guān)系式;
(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;
(3)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)﹣5,|﹣1.5|,﹣,0,3,﹣(﹣1)表示的點(diǎn).
(1)畫在數(shù)軸上;
(2)用“<”把這些數(shù)連接起來(lái);
(3)指出:負(fù)數(shù)是 ;分?jǐn)?shù)是 ;非負(fù)整數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生最喜歡的球類運(yùn)動(dòng)情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生只寫一類最喜歡的球類運(yùn)動(dòng).以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.
根據(jù)以上信息,解答下列問(wèn)題:
(1)被調(diào)查的學(xué)生中,最喜歡乒乓球的有 人,最喜歡籃球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %;
(2)被調(diào)查學(xué)生的總數(shù)為 人,其中,最喜歡籃球的有 人,最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %;
(3)該校共有450名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校最喜歡排球的學(xué)生數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)O為△ABC的兩條角平分線的交點(diǎn),過(guò)點(diǎn)O作OD⊥BC于點(diǎn)D,且OD=4.若△ABC的周長(zhǎng)是17,則△ABC的面積為( 。
A. 34B. 17C. 8.5D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上兩點(diǎn)對(duì)應(yīng)的數(shù)分別為、16,點(diǎn)為數(shù)軸上一動(dòng)點(diǎn),點(diǎn)對(duì)應(yīng)的數(shù)為.
(1)填空:若時(shí),點(diǎn)到點(diǎn)、點(diǎn)的距離之和為_(kāi)____________.
(2)填空:若點(diǎn)到點(diǎn)、點(diǎn)的距離相等,則_______.
(3)填空:若,則_______.
(4)若動(dòng)點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)向點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)向點(diǎn)運(yùn)動(dòng)兩動(dòng)點(diǎn)同時(shí)運(yùn)動(dòng)且一動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí)另一動(dòng)點(diǎn)也停止運(yùn)動(dòng),經(jīng)過(guò)秒,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)a在數(shù)軸上表示的點(diǎn)在原點(diǎn)左側(cè),距離原點(diǎn)3個(gè)單位長(zhǎng),b在數(shù)軸上表示的點(diǎn)在原點(diǎn)右側(cè),距離原點(diǎn)2個(gè)單位長(zhǎng),c和d互為倒數(shù),m與n互為相反數(shù),y為最大的負(fù)整數(shù),求(y+b)2+m(a-cd)-nb2的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com