【題目】如圖,已知△ABC中,∠ACB=90°,AC=4,BC=3,點M、N分別是邊AC、AB上的動點,連接MN,將△AMN沿MN所在直線翻折,翻折后點A的對應(yīng)點為A′.
(1)如圖1,若點A′恰好落在邊AB上,且AN=AC,求AM的長;
(2)如圖2,若點A′恰好落在邊BC上,且A′N∥AC.
①試判斷四邊形AMA′N的形狀并說明理由;
②求AM、MN的長;
(3)如圖3,設(shè)線段NM、BC的延長線交于點P,當(dāng)且時,求CP的長.
【答案】(1);(2)①菱形,理由見解析;②AM=,MN=;(3)1.
【解析】
(1)利用相似三角形的性質(zhì)求解即可.
(2)①根據(jù)鄰邊相等的平行四邊形是菱形證明即可.
②連接AA′交MN于O.設(shè)AM=MA′=x,由MA′∥AB,可得=,由此構(gòu)建方程求出x,解直角三角形求出OM即可解決問題.
(3)如圖3中,作NH⊥BC于H.想辦法求出NH,CM,利用相似三角形,確定比例關(guān)系,構(gòu)建方程解決問題即可.
解:(1)如圖1中,
在Rt△ABC中,∵∠C=90°,AC=4,BC=3,
∴AB=,
∵∠A=∠A,∠ANM=∠C=90°,
∴△ANM∽△ACB,
∴=,
∵AN=AC
∴=,
∴AM=.
(2)①如圖2中,
∵NA′∥AC,
∴∠AMN=∠MNA′,
由翻折可知:MA=MA′,∠AMN=∠NMA′,
∴∠MNA′=∠A′MN,
∴A′N=A′M,
∴AM=A′N,∵AM∥A′N,
∴四邊形AMA′N是平行四邊形,
∵MA=MA′,
∴四邊形AMA′N是菱形.
②連接AA′交MN于O.設(shè)AM=MA′=x,
∵MA′∥AB,
∴
∴=,
∴=,
解得x=,
∴AM=
∴CM=,
∴CA′===,
∴AA′===,
∵四邊形AMA′N是菱形,
∴AA′⊥MN,OM=ON,OA=OA′=,
∴OM===,
∴MN=2OM=.
(3)如圖3中,作NH⊥BC于H.
∵NH∥AC,
∴△ABC∽△NBH
∴==
∴==
∴NH=,BH=,
∴CH=BC﹣BH=3﹣=,
∴AM=AC=,
∴CM=AC﹣AM=4﹣=,
∵CM∥NH,
∴△CPM∽△HPN
∴=,
∴=,
∴PC=1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線交x軸于點A,交y軸于點B,點P是x軸上一動點,以點P為圓心,以1個單位長度為半徑作⊙P,當(dāng)⊙P與直線AB相切時,點P的橫坐標(biāo)是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O外的一點,CB與⊙O相切于點B,AC交⊙O于點D,點E是上的一點(不與點A,B,D重合),若∠C=48°,則∠AED的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面三行數(shù):
2,﹣4,8,﹣16,32,﹣64,…
4,﹣2,10,﹣14,34,﹣62,…
﹣1,2,﹣4,8,﹣16,32,…
在上面三行數(shù)的第n列中,從上往下的三個數(shù)分別記為a,b,c,觀察這些數(shù)的特點,根據(jù)你所得到的規(guī)律,解答下列為問題.
(1)用含n的式子分別表示出a,b,c;
(2)根據(jù)(1)的結(jié)論,若a,b,c三個數(shù)的和為770,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖:已知△ABC,如圖.
(1)求作:△ABC的外接圓⊙O;
(2)若AC=4,∠B=30°,則△ABC的外接圓⊙O的半徑為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)在所給的平面直角坐標(biāo)系中畫出它的圖象;
(2)若三點A(x1,y1),B(x2,y2),C(x3.y3)且2<x1<x2<x3,則y1,y2,y3的大小關(guān)系為 .
(3)把所畫的圖象如何平移,可以得到函數(shù)y=x2的圖象?請寫出一種平移方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:在平面直角坐標(biāo)系中,如果點P的坐標(biāo)為(m,n),向量可以用點P的坐標(biāo)表示為:=(m,n).已知=(x1,y1),=(x2,y2),如果x1x2+y1y2=0,那么與互相垂直,在下列四組向量中,互相垂直的是( 。
A.=(3,20190),=(﹣3﹣1,1)
B.=(﹣1,1),=(+1,1)
C.=(),=((﹣)2,8)
D.=(+2,),=(﹣2,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中有四個完全相同的小球,把它們分別標(biāo)號為1,2,3,4.隨機摸取一個小球然后放回,再隨機摸出一個小球,請用樹狀圖或列表法求下列事件的概率.
(1)兩次取出的小球的標(biāo)號相同;
(2)兩次取出的小球標(biāo)號的和等于6.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在南北方向的海岸線上,有兩艘巡邏船,現(xiàn)均收到故障船的求救信號.已知兩船相距海里,船在船的北偏東60°方向上,船在船的東南方向上, 上有一觀測點,測得船正好在觀測點的南偏東75°方向上.
(1)分別求出與,與間的距離和; (本問如果有根號,結(jié)果請保留根號) (此提示可以幫助你解題:∵,∴)
(2)已知距觀測點處100海里范圍內(nèi)有暗礁,若巡邏船沿直線去營救船,去營救的途中有無觸礁的危險?(參考數(shù)據(jù): )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com