【題目】如圖,、分別切、,,是劣弧上的點(diǎn)(不與點(diǎn)、重合),過點(diǎn)的切線分別交、于點(diǎn)、.則的周長為(

A. B. C. D.

【答案】C

【解析】

根據(jù)切線長定理由PA、PB分別切⊙OA、B得到PB=PA=10cm,由于過點(diǎn)C的切線分別交PA、PB于點(diǎn)E、F,再根據(jù)切線長定理得到EA=EC,F(xiàn)C=FB,然后三角形周長的定義得到△PEF的周長=PE+EF+PF=PE+EC+FC+PF,用等線段代換后得到三角形PEF的周長等于PA+PB即可得答案.

∵PA、PB分別切⊙OA、B,

∴PB=PA=10cm,

∵EAEC為⊙的切線,

∴EA=EC,

同理得到FC=FB,

∴△PEF的周長=PE+EF+PF=PE+EC+FC+PF

=PE+EA+FB+PF

=PA+PB

=10+10

=20(cm).

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1ykx+bx軸、y軸分別交于AB兩點(diǎn),其中點(diǎn)B的坐標(biāo)為(06),∠BAO=30°將直線l1沿著y軸正方向平移一段距離得到直線l2y軸于點(diǎn)M,且l1l2之間的距離為3,點(diǎn)Cx,y)是直線11上的一個(gè)動點(diǎn),過點(diǎn)CAB的垂線CDy軸于點(diǎn)D

1)求點(diǎn)M的坐標(biāo)和直線l1的解析式;

2)當(dāng)C運(yùn)動到什么位置時(shí),△AOD的面積為21,求出此時(shí)點(diǎn)C的坐標(biāo);

3)連接AM,將△ABM繞著點(diǎn)M旋轉(zhuǎn)得到△A'B'M,在平面內(nèi)是否存在一點(diǎn)N.使四邊形AMA'N為矩形?若存在,求出點(diǎn)N的坐標(biāo):若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長為1的正方形OA1B1C1的兩邊在坐標(biāo)軸上,以它的對角線OB1為邊作正方形OB1B2C2,再以正方形OB1B2C2的對角線OB2為邊作正方形OB2B3C3,以此類推……則正方形OB2019B2020C2020的頂點(diǎn)B2020的坐標(biāo)是 _____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某海域有兩個(gè)海拔均為200米的海島A和海島B,一勘測飛機(jī)在距離海平面垂直高度為1100米的空中飛行,飛行到點(diǎn)C處時(shí)測得正前方一海島頂端A的俯角是45°,然后沿平行于AB的方向水平飛行1.99×104米到達(dá)點(diǎn)D處,在D處測得正前方另一海島頂端B的俯角是60°,求兩海島間的距離AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判斷是直角三角形的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)上,延長至點(diǎn),使,延長的另一個(gè)交點(diǎn)為,連接,

求證:

,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,、,是弧上任一點(diǎn),過點(diǎn)的切線交、于點(diǎn)、

,求的周長;

,,你能求出的半徑嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)DAB上,點(diǎn)EAC上,ABAC添加下列一個(gè)條件后,還不能證明△ABE≌△ACD的是( 。

A.ADAEB.BDCEC.B=∠CD.BECD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn),頂點(diǎn)為點(diǎn),點(diǎn)為拋物線上的一個(gè)動點(diǎn),是過點(diǎn)且垂直于軸的直線,過,垂足為,連接

求拋物線的解析式,并寫出其頂點(diǎn)的坐標(biāo);

①當(dāng)點(diǎn)運(yùn)動到點(diǎn)處時(shí),計(jì)算:________,________,由此發(fā)現(xiàn),________(填“”、“”或“”);

②當(dāng)點(diǎn)在拋物線上運(yùn)動時(shí),猜想有什么數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案