【題目】某品牌手機(jī)銷售公司有營銷員14人,銷售部為制定營銷人員月銷售手機(jī)定額,統(tǒng)計了這14人某月的銷售量如下(單位:臺):
銷售量 | 200 | 170 | 165 | 80 | 50 | 40 |
人 數(shù) | 1 | 1 | 2 | 5 | 3 | 2 |
(1)求這14位營銷員該月銷售該品牌手機(jī)的平均數(shù)、中位數(shù)和眾數(shù).
(2)銷售部經(jīng)理把每位營銷員月銷售量定為100臺,你認(rèn)為是否合理?為什么?
【答案】(1)平均數(shù)95、眾數(shù)80 中位數(shù)80;(2)不合理,理由見解析
【解析】
(1)用加權(quán)平均數(shù)的求法求得其平均數(shù),出現(xiàn)最多的數(shù)據(jù)是眾數(shù),將數(shù)據(jù)從小到大排序后位于中間位置的數(shù)是中位數(shù).
(2)眾數(shù)、中位數(shù)是大部分人能完成的臺數(shù),據(jù)此即可判斷.
解:(1)平均數(shù)=
∵共有14個人,
∴中位數(shù)為80
∵有5人銷售80臺,80出現(xiàn)的次數(shù)最多
∴眾數(shù)為80
故平均數(shù)是95,中位數(shù)是80,眾數(shù)是80;
(2)不合理,若將每位營銷員月銷售量定為100臺,則多數(shù)營銷員可能完不成任務(wù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場同時購進(jìn)甲、乙兩種商品共100件,其進(jìn)價和售價如下表:
商品名稱 | 甲 | 乙 |
進(jìn)價(元/件) | 40 | 90 |
售價(元/件) | 60 | 120 |
設(shè)其中甲種商品購進(jìn)x件,商場售完這100件商品的總利潤為y元.
(Ⅰ)寫出y關(guān)于x的函數(shù)關(guān)系式;
(Ⅱ)該商場計劃最多投入8000元用于購買這兩種商品,
①至少要購進(jìn)多少件甲商品?
②若銷售完這些商品,則商場可獲得的最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).
(1)另外利用一些構(gòu)成勾股數(shù)的公式也可以寫出許多勾股數(shù),畢達(dá)哥拉斯學(xué)派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).
(2)然而,世界上第一次給出的勾股數(shù)公式,收集在我國古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書中提到:當(dāng)a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數(shù),m>n時,a、b、c構(gòu)成一組勾股數(shù);利用上述結(jié)論,解決如下問題:已知某直角三角形的邊長滿足上述勾股數(shù),其中一邊長為37,且n=5,求該直角三角形另兩邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】5G網(wǎng)絡(luò)是第五代移動通信網(wǎng)絡(luò),它將推動我國數(shù)字經(jīng)濟(jì)發(fā)展邁上新臺階. 據(jù)預(yù)測,2020年到2030年中國5G直接經(jīng)濟(jì)產(chǎn)出和間接經(jīng)濟(jì)產(chǎn)出的情況如下圖所示.
根據(jù)上圖提供的信息,下列推斷不合理的是( )
A.2030年5G間接經(jīng)濟(jì)產(chǎn)出比5G直接經(jīng)濟(jì)產(chǎn)出多4.2萬億元
B.2020年到2030年,5G直接經(jīng)濟(jì)產(chǎn)出和5G間接經(jīng)濟(jì)產(chǎn)出都是逐年增長
C.2030年5G直接經(jīng)濟(jì)產(chǎn)出約為2020年5G直接經(jīng)濟(jì)產(chǎn)出的13倍
D.2022年到2023年與2023年到2024年5G間接經(jīng)濟(jì)產(chǎn)出的增長率相同
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的圖形M,N,給出如下定義:如果點P為圖形M上任意一點,點Q為圖形N上任意一點,那么稱線段PQ長度的最小值為圖形M,N的“近距離”,記作 d(M,N).若圖形M,N的“近距離”小于或等于1,則稱圖形M,N互為“可及圖形”.
(1)當(dāng)⊙O的半徑為2時,
①如果點A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)= ________;
②如果直線與⊙O互為“可及圖形”,求b的取值范圍;
(2)⊙G的圓心G在軸上,半徑為1,直線與x軸交于點C,與y軸交于點D,如果⊙G和∠CDO互為“可及圖形”,直接寫出圓心G的橫坐標(biāo)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形PQMN在△ABC內(nèi),點P在AC上,點Q、M在AB上,N在△ABC內(nèi),連接AN并延長交BC于G,過G點作GD∥AB交AC于D,過D、G分別作DE ⊥AB,GF⊥AB,垂足分別為E、F.
(1)求證:DG=GF;
(2)若AB=10,S△ABC=40,試求四邊形DEFG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,是的直徑,交于點,過點的直線交于點,交的延長線于點.
(1)求證:是的切線;
(2)若,試求的長;
(3)如圖2,點是弧的中點,連結(jié),交于點,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某工藝廠設(shè)計了款成本為元件的工藝品投放市場進(jìn)行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(元/件) | ··· | ··· | ||||
每天銷售量(件) | ··· | ··· |
(1)若是的一次函數(shù),求出此函數(shù)的關(guān)系式:
(2)若用(元)表示工藝廠試銷該工藝品每天獲得的利潤,試求(元)與(元/件)之間的函數(shù)關(guān)系式.
(3)若該工藝品的每天的總成木不能超過元,那么銷售單價定為多少元時,工藝廠試銷工藝品每天獲得的利潤最大,最大是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com