【題目】已知是⊙的直徑,點(diǎn)在⊙上.

1)如圖①,點(diǎn)在⊙上,且,若20°,求的大;

2)如圖②,過(guò)點(diǎn)作⊙的切線,交的延長(zhǎng)線于點(diǎn),若⊙的直徑為,,求的長(zhǎng).

【答案】1;(2EA

【解析】

1)如圖①,連接OC,根據(jù)圓周角定理求出,根據(jù)可求得,進(jìn)而可求的大;

2)如圖②,連接OC,首先證明ACO是等邊三角形,然后根據(jù)切線的性質(zhì)可得ECO是直角三角形且∠E30°,再根據(jù)含30度直角三角形的性質(zhì)可得答案.

解:(1)如圖①,連接OC,

,

,

;

2)如圖②,連接OC,

∵⊙的直徑為,

OAOC,

AC,

ACO是等邊三角形,

∴∠AOC60°

CE切⊙于點(diǎn)C,

∴∠ECO90°

∴在RtECO中,∠E30°

OE2OC,

EAOEOA

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,∠BAC60°,DBC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到AE,連接EC,則:

1ACE的度數(shù)是   ; 線段ACCD,CE之間的數(shù)量關(guān)系是   

2)如圖,在△ABC中,ABAC,∠BAC90°,DBC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,請(qǐng)判斷線段AC,CDCE之間的數(shù)量關(guān)系,并說(shuō)明理由;

3)如圖,ACDE交于點(diǎn)F,在(2)條件下,若AC8,求AF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸正半軸相交,其頂點(diǎn)坐標(biāo)為,下列結(jié)論:;②;③;④.其中正確的有______個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)的三個(gè)頂點(diǎn),與軸相交于,點(diǎn)坐標(biāo)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),點(diǎn)軸的正半軸上.

1)求該拋物線的函數(shù)解析式;

2)點(diǎn)為線段上一動(dòng)點(diǎn),過(guò)點(diǎn)軸,軸, 垂足分別為點(diǎn),當(dāng)四邊形為正方形時(shí),求出點(diǎn)的坐標(biāo);

3)將(2 中的正方形沿向右平移,記平移中的正方形為正方形,當(dāng)點(diǎn)和點(diǎn)重合時(shí)停止運(yùn)動(dòng), 設(shè)平移的距離為,正方形的邊交于點(diǎn),所在的直線與交于點(diǎn) 連接,是否存在這樣的,使是等腰三角形?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中學(xué)生上學(xué)帶手機(jī)的現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注,為此媒體記者隨機(jī)調(diào)查了某校若干名學(xué)生上學(xué)帶手機(jī)的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)此次抽樣調(diào)查中,共調(diào)查了   名學(xué)生;

(2)將圖1、圖2補(bǔ)充完整;

(3)現(xiàn)有4名學(xué)生,其中A類兩名,B類兩名,從中任選2名學(xué)生,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,∠A=30°,AC=4,M是AB邊上一動(dòng)點(diǎn),N是AC邊上的一動(dòng)點(diǎn),則MN+MC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】佳潤(rùn)商場(chǎng)銷售,兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如表所示:

進(jìn)價(jià)(萬(wàn)元/套)

1.5

1.2

售價(jià)(萬(wàn)元/套)

1.65

1.4

該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬(wàn)元,全部銷售后可獲 毛利潤(rùn)9萬(wàn)元.

1)該商場(chǎng)計(jì)劃購(gòu)進(jìn),兩種品牌的教學(xué)設(shè)備各多少套?

2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少種設(shè)備的購(gòu)進(jìn)數(shù)量,增加種設(shè)備的購(gòu)進(jìn)數(shù)量,已知種設(shè)備增加的數(shù)量 種設(shè)備減少的數(shù)量的1.5倍.若用于購(gòu)進(jìn)這兩種教學(xué)設(shè)備的 總資金不超過(guò)69萬(wàn)元,問(wèn)種設(shè)備購(gòu)進(jìn)數(shù)量至多減少多少套?

3)在(2)的條件下,該商場(chǎng)所能獲得的最大利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)社會(huì)的發(fā)展,人民對(duì)于美好生活的追求越來(lái)越高.某社區(qū)為了了解家庭對(duì)于文化教育的消費(fèi)悄況,隨機(jī)抽取部分家庭,對(duì)每戶家庭的文化教育年消費(fèi)金額進(jìn)行問(wèn)卷調(diào)査,根據(jù)調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖表.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問(wèn)題:

組別

家庭年文化教育消費(fèi)金額x(元)

戶數(shù)

A

x≤5000

36

B

5000<x≤10000

m

C

10000<x≤15000

27

D

15000<x≤20000

15

E

x>20000

30

(1)本次被調(diào)査的家庭有__________戶,表中 m=__________;

(2)本次調(diào)查數(shù)據(jù)的中位數(shù)出現(xiàn)在__________組.扇形統(tǒng)計(jì)圖中,D組所在扇形的圓心角是__________度;

(3)這個(gè)社區(qū)有2500戶家庭,請(qǐng)你估計(jì)家庭年文化教育消費(fèi)10000元以上的家庭有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c(b,c是常數(shù))經(jīng)過(guò)A(0,2)、B(4,0)兩點(diǎn).

(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);

(2)作垂直x軸的直線x=t,在第一象限交直線ABM,交這條拋物線于N,求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?

(3)在(1)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,請(qǐng)直接寫出第四個(gè)頂點(diǎn)D的所有坐標(biāo)(直接寫出結(jié)果,不必寫解答過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案