【題目】已知數(shù)軸上有A、B、C三個點對應(yīng)的數(shù)分別是a、b、c,滿足|a+24|+|b+10|+(c﹣10)2=0;動點P從A出發(fā),以每秒1個單位的速度向終點C移動,設(shè)移動時間為t秒.當(dāng)點P運動到B點時,點Q從A點出發(fā),以每秒3個單位的速度向C點運動,Q點到達(dá)C點后,再立即以同樣的速度返回,運動到終點A.在返回過程中,當(dāng)t=_____秒時,P、Q兩點之間的距離為2.
【答案】2或14或16
【解析】
分0<t≤10、10<t≤34和15<t≤34三種情況考慮,根據(jù)兩點間的距離公式結(jié)合PQ=2即可得出關(guān)于t的一元一次方程,解之即可得出結(jié)論.
,
∴a+24=0,b+10=0,c-10=0,
解得a=-24,b=-10, c=10.
∴A、B、C三點分別表示的數(shù)是-24,-10,10,
經(jīng)過t秒后,點P表示的數(shù)為t-24,點Q表示的數(shù)為
t-24=3(t-10)-24,
解得:t=15,
∴當(dāng)t=15秒時,點Q追上點P.
(i)當(dāng)0<t≤10時,點Q還在點A處,
∴PQ=t-2-(-24)=t=2;
(ii)當(dāng)10<t≤34時,點P在點Q的右側(cè),
∴(t-24)-[3(t-10)-24]=2,
解得:t=14;
(iii)當(dāng)15<t≤34時,點P在點Q的左側(cè),
∴3(t-10)-24-(t-24)=2,
解得:t=16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長為 的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點C的坐標(biāo)為(﹣1,0),點B在拋物線y=ax2+ax﹣2上.
(1)點A的坐標(biāo)為 , 點B的坐標(biāo)為;
(2)拋物線的解析式為;
(3)設(shè)(2)中拋物線的頂點為D,求△DBC的面積;
(4)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請直接寫出所有點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果直角三角形一條直角邊長為23,斜邊和另一條直角邊長的長度都是整數(shù),則這個直角三角形斜邊的長為_________________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)1至2018按一定規(guī)律排列如下表:
平移表中帶陰影的方框,方框中三個數(shù)的和可能是( )
A. 2018 B. 2019 C. 2040 D. 2049
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A=2x2+ax﹣5y+b,B=bx2﹣x﹣y﹣3.
(1)求3A﹣(4A﹣2B)的值;
(2)當(dāng)x取任意數(shù)值,A﹣2B的值是一個定值時,求(a+A)﹣(2b+B)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P(a,a)是反比例函數(shù)y= 在第一象限內(nèi)的圖象上的一個點,以點P為頂點作等邊△PAB,使A、B落在x軸上,則△POA的面積是( )
A.3
B.4
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC= .
(1)求OD、OC的長;
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了豐富學(xué)生的校園生活,準(zhǔn)備購進(jìn)一批籃球和足球.其中籃球的單價比足球的單價多40元,用1500元購進(jìn)的籃球個數(shù)與900元購進(jìn)的足球個數(shù)相等.
(1)籃球和足球的單價各是多少元?
(2)該校打算用1000元購買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購買方案有哪幾種?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABO中,OA=OB,C是邊AB的中點,以O(shè)為圓心的圓過點C,且與OA交于點E,與OB交于點F,連接CE,CF.
(1)求證:AB與⊙O相切.
(2)若∠AOB=∠ECF,試判斷四邊形OECF的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com