【題目】如圖,將邊長為8的正方形紙片ABCD折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,點(diǎn)A落在點(diǎn)F處,折痕為MN,若MN=4,則線段CN的長是____.
【答案】3
【解析】
過點(diǎn)M作MH⊥CD于點(diǎn)H.連接DE,結(jié)合題意可知MN垂直平分DE,先通過證明△MHN△DCE得出DE=MN=,然后利用勾股定理求出CE的長,最后在Rt△ENC中利用勾股定理求出DN,最后進(jìn)一步求出CN即可.
如圖所示,過點(diǎn)M作MH⊥CD于點(diǎn)H.連接DE.
根據(jù)題意可知MN垂直平分DE,易證得:∠EDC=∠NMH,MH=AD,
∵四邊形ABCD是正方形,
∴MH=AD=CD,
∵∠MHN=∠C=90°,
∴△MHN△DCE(ASA),
∴DE=MN=,
在Rt△DEC中,,
設(shè)DN=EN=,則CN=,
在Rt△ENC中,,
∴,
解得:,
∴CN=,
故答案為:3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,AP是⊙O的切線,A是切點(diǎn),BP與⊙O交于點(diǎn)C.
(1)如圖①,若∠P=35°,求∠ABP的度數(shù);
(2)如圖②,若直線CD是⊙O的切線,求證:D為AP的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處,點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:①∠EBG=45°;②S△ABG=S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正確的是_____.(把所有正確結(jié)論的序號都選上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=4,BC=2,∠ABC=45°,以AB為一邊作等腰直角三角形ABD,使∠ABD=90°,連接CD,則線段CD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線y=2x+4與兩坐標(biāo)軸分別交于A,B兩點(diǎn).
(1)若一次函數(shù)y=﹣x+m與直線AB的交點(diǎn)在第二象限,求m的取值范圍;
(2)若M是y軸上一點(diǎn),N是x軸上一點(diǎn),直線AB上是否存在兩點(diǎn)P,Q,使得以M,N,P,Q四點(diǎn)為頂點(diǎn)的四邊形是正方形.若存在,求出M,N兩點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC,BD相交于點(diǎn)O,且AB∥CD,添加下列條件后仍不能判斷四邊形ABCD是平行四邊形的是( 。
A.AB=CDB.AD∥BCC.OA=OCD.AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù) y=ax2+bx+c 的圖象交 x 軸于A、B 兩點(diǎn),交 y 軸于 C 點(diǎn),P 為 y 軸上的一個(gè)動點(diǎn),已知 A(﹣2,0)、C(0,﹣2 ),且拋物線的對稱軸是直線 x=1.
(1)求此二次函數(shù)的解析式;
(2)連接 PB,則 PC+PB 的最小值是 ;
(3)連接 PA、PB,P 點(diǎn)運(yùn)動到何處時(shí),使得∠APB=60°,請求出 P 點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是雙曲線y=﹣在第二象限分支上的一個(gè)動點(diǎn),連接AO并延長交另一分支于點(diǎn)B,以AB為底作等腰△ABC,且∠ACB=120°,點(diǎn)C在第一象限,隨著點(diǎn)A的運(yùn)動,點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y=上運(yùn)動,則k的值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com