【題目】在正方形和等腰直角中,的中點(diǎn),連接.

1)如圖1,當(dāng)點(diǎn)邊上時(shí),延長于點(diǎn).求證:

2)如圖2,當(dāng)點(diǎn)的延長線上時(shí),(1)中的結(jié)論是否成立?請(qǐng)證明你的結(jié)論;

3)如圖3,若四邊形為菱形,且,為等邊三角形,點(diǎn)的延長線上時(shí),線段又有怎樣的數(shù)量關(guān)系,請(qǐng)直接寫出你的結(jié)論,并畫出論證過程中需要添加的輔助線.

【答案】1)證明見解析;(2)成立,證明見解析;(3,圖詳見解析.

【解析】

1)利用已知條件易證,則有,從而有,再利用直角三角形的斜邊中線的性質(zhì)即可得出結(jié)論;

2)由已知條件易證,由全等三角形的性質(zhì)證明,最后利用直角三角形的斜邊中線的性質(zhì)即可得出結(jié)論;

3)由已知條件易證,由全等三角形的性質(zhì)證明,最后利用等腰三角形的性質(zhì)和特殊角的三角函數(shù)值即可求出答案.

1)證明:,

,

(ASA)

,,

中,

2)成立,證明如下:

延長,使,連接、、.

,

、、

,

中,

3

論證過程中需要的輔助線如圖所示

證明:延長GP到點(diǎn)E,使,連接DE,CE,CG,

為等邊三角形

又∵

又∵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計(jì),在整個(gè)過程中,每棵樹苗的種植成本如圖所示.設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.

1)求yx之間的函數(shù)關(guān)系式;

2)設(shè)種植的總成本為w元,

wx之間的函數(shù)關(guān)系式;

若種植的總成本為5600元,從植樹工人中隨機(jī)采訪一名工人,求采訪到種植C種樹苗工人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為∠ABC的邊上的一點(diǎn),過點(diǎn)OOMAB于點(diǎn),到點(diǎn)的距離等于線段OM的長的所有點(diǎn)組成圖形.圖形W與射線交于E,F兩點(diǎn)(點(diǎn)在點(diǎn)F的左側(cè)).

1)過點(diǎn)于點(diǎn),如果BE=2,求MH的長;

2)將射線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到射線BD,使得∠,判斷射線BD與圖形公共點(diǎn)的個(gè)數(shù),并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABAC,∠BAC120°,MBC邊上一動(dòng)點(diǎn)(M不與B、C重合)

1)如圖1,若∠MAC45°,求;

2)如圖2,將CM繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°CN,連接BN,TBN的中點(diǎn),連接AT

①求證:AM2AT;

②當(dāng)ABAC2時(shí),直接寫出CM+4AT的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點(diǎn)D,連接AD.過點(diǎn)D作DE⊥AC,垂足為點(diǎn)E.

(1)求證:DE是O的切線;

(2)當(dāng)O半徑為3,CE=2時(shí),求BD長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接與⊙OAB=AC,ACBD,垂足為E,點(diǎn)FBD的延長線上,且DF=DC,連接AF、CF。

1)若∠CAD=α,求∠BAC(用含α的代數(shù)式表示);

2)求證:CF是⊙O的切線。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA為半徑的圓與BC相切于點(diǎn)D,分別交AB,AC于點(diǎn)E,F.

(1)如圖①,連接AD,若∠CAD=25°,求∠B的大小;

(2)如圖②,若點(diǎn)F為弧AD的中點(diǎn),⊙O的半徑為2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:若關(guān)于x的一元二次方程ax2+bx+c0的兩個(gè)非零實(shí)數(shù)根分別為x1,x2,則x1+x2=﹣,x1x2.

解決下列問題:已知關(guān)于x的一元二次方程(x+n)26x有兩個(gè)非零不等實(shí)數(shù)根x1,x2,設(shè)m,

()當(dāng)n1時(shí),求m的值;

()是否存在這樣的n值,使m的值等于?若存在,求出所有滿足條件的n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

同步練習(xí)冊(cè)答案