如圖所示,已知AB是半圓O的直徑,D是AB延長線上的一點,AE⊥DC,交DC的延長線于點E,交半圓O于點F,且C為
BF
的中點.
(1)求證:DE是半圓O的切線;
(2)若∠D=30°,求證:∠CAE=∠BCD.
證明:(1)連接BF,OC.
∵C為弧BF的中點,
∴OC⊥BF,
又∵AB是半圓O的直徑,
∴BF⊥AE,
∴BFCE,
∴OC⊥DE,
∴DE是半圓O的切線;

(2)∵AB是半圓O的直徑,
∴∠ACB=90°,
∴∠ACE+∠BCD=90°,
又∵直角△ACE中,∠ACE+∠EAC=90°,
∴∠EAC=∠BCD.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,AD⊥DC,AC平分∠DAB.
(1﹚求證:直線CD與⊙O相切于點C;
(2﹚如果AD和AC的長是一元二次方程x2-(2+
3
)x+2
3
=0
的兩根,求AD、AC、AB的長和∠DAB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是半圓O上的直徑,E是
BC
的中點,OE交弦BC于點D,過點C作⊙O切線交OE的延長線于點F.已知BC=8,DE=2.
(1)求⊙O的半徑;
(2)求CF的長;
(3)求tan∠BAD的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知△ABC內(nèi)接于⊙O,AC是⊙O的直徑,D是
AB
的中點,過點D作直線BC的垂線,分別交CB、CA的延長線E、F.
(1)求證:EF是⊙O的切線;
(2)若EF=8,EC=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖:PA、PB切⊙O于A、B,過點C的切線交PA、PB于D、E,PA=10cm,則△PDE的周長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,以C為圓心的圓切AB于點D,交AC于點E,過點E作AB的垂線,垂足為H,HE交BC的延長線于點G,已知∠A=α,AE=m,則EG=______(用含α,m的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC交于點D,與邊AC交于點E,過點D作DF⊥AC于F.
(1)求證:DF為⊙O的切線;
(2)若DE=
5
2
,AB=
5
2
,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在以O為圓心的兩個同心圓中,大圓的弦AB與小圓相切于點C,若大圓的半徑為5cm,小圓的半徑為3cm,則弦AB的長為______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.
(1)猜想ED與⊙O的位置關系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.

查看答案和解析>>

同步練習冊答案