如圖,直線y=2x+4與x,y軸分別交于A,B兩點,以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,將點C向左平移,使其對應(yīng)點C′恰好落在直線AB上,則點C′的坐標(biāo)為 .
科目:初中數(shù)學(xué) 來源: 題型:
如圖2是裝有三個小輪的手拉車在“爬”樓梯時的側(cè)面示意圖,定長的輪架桿OA,OB,OC抽象為線段,有OA=OB=OC, 且∠AOB=120°,折線NG-GH-HE-EF表示樓梯,GH,EF是水平線,NG,HE是鉛垂線,半徑相等的小輪子⊙A,⊙B與樓梯兩邊都相切,且AO∥GH.
(1)如圖2①,若點H在線段OB上,則的值是 .
(2)如果一級樓梯的高度HE=cm,點H到線段OB的距離d滿足條件d≤3cm,那么小輪子半徑r的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為( 。
| A. | 40° | B. | 45° | C. | 50° | D. | 55° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與x軸平行,且與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點M稱為碟頂,點M到線段AB的距離稱為碟高.
(1)拋物線y=x2對應(yīng)的碟寬為 4 ;拋物線y=4x2對應(yīng)的碟寬為 ;拋物線y=ax2(a>0)對應(yīng)的碟寬為 ;拋物線y=a(x﹣2)2+3(a>0)對應(yīng)的碟寬為 ;
(2)拋物線y=ax2﹣4ax﹣(a>0)對應(yīng)的碟寬為6,且在x軸上,求a的值;
(3)將拋物線y=anx2+bnx+cn(an>0)的對應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3…),定義F1,F(xiàn)2,…,F(xiàn)n為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點,現(xiàn)將(2)中求得的拋物線記為y1,其對應(yīng)的準(zhǔn)蝶形記為F1.
①求拋物線y2的表達式;
②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn,則hn= ,F(xiàn)n的碟寬有端點橫坐標(biāo)為 ;F1,F(xiàn)2,…,F(xiàn)n的碟寬右端點是否在一條直線上?若是,直接寫出該直線的表達式;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
據(jù)統(tǒng)計,截止到2013年末,某省初中在校學(xué)生共有645000人,將數(shù)據(jù)645000用科學(xué)記數(shù)法表示為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖(圖略),從一副撲克牌中選取紅桃10,方塊10,梅花5,黑桃8四張撲克牌,洗勻后正面朝下放在桌子上,甲先從中任意抽取一張后,乙再從剩余的三張撲克牌中任意抽取一張,用畫樹形圖或列表的方法,求甲乙兩人抽取的撲克牌的點數(shù)都是10的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖①,直角三角形AOB中,∠AOB=90°,AB平行于x軸,OA=2OB,AB=5,反比例函數(shù) 的圖象經(jīng)過點A.
(1)直接寫出反比例函數(shù)的解析式;
(2)如圖②,P(x,y)在(1)中的反比例函數(shù)圖象上,其中1<x<8,連接OP,過O 作OQ⊥OP,且OP=2OQ,連接PQ.設(shè)Q坐標(biāo)為(m,n),其中m<0,n>0,求n與m的函數(shù)解析式,并直接寫出自變量m的取值范圍;
(3)在(2)的條件下,若Q坐標(biāo)為(m,1),求△POQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將進貨單價為70元的某種商品按零售價100元/個售出時每天能賣出20個,若這種商品的零售價在一定范圍內(nèi)每降價1元,其日銷售量就增加1個,為了獲得最大利潤,則應(yīng)降價( )
A.4元 B.5元 C.8元 D.10元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com