【題目】數(shù)學(xué)老師在課堂上提出一個問題:“通過探究知道:≈1.414…,它是個無限不循環(huán)小數(shù),也叫無理數(shù),它的整數(shù)部分是1,那么有誰能說出它的小數(shù)部分是多少”,小明舉手回答:它的小數(shù)部分我們無法全部寫出來,但可以用﹣1來表示它的小數(shù)部分,張老師夸獎小明真聰明,肯定了他的說法.現(xiàn)請你根據(jù)小明的說法解答:
(1)的小數(shù)部分是a,的整數(shù)部分是b,求a+2b﹣的值.
(2)已知6+=x+y,其中x是一個整數(shù),0<y<1,求2x+(y﹣)2018的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場甲、乙、丙三名業(yè)務(wù)員5個月的銷售額(單位:萬元)如下表:
月份 | 第1月 | 第2月 | 第3月 | 第4月 | 第5月 |
甲 | 7.2 | 9.6 | 9.6 | 7.8 | 9.3 |
乙 | 5.8 | 9.7 | 9.8 | 5.8 | 9.9 |
丙 | 4 | 6.2 | 8.5 | 9.9 | 9.9 |
(1)根據(jù)上表中的數(shù)據(jù),將下表補充完整:
統(tǒng)計值 | 平均數(shù)(萬元) | 中位數(shù)(萬元) | 眾數(shù)(萬元) |
甲 | 9.3 | 9.6 | |
乙 | 8.2 | 5.8 | |
丙 | 7.7 | 8.5 |
(2)甲、乙、丙三名業(yè)務(wù)員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在□ABCD中,點E,F分別在邊BC和AD上,且CE=AF,
(1)求證:△ABE ≌ △CDF;
(2)求證:四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BD平分∠ABC,且AD⊥BD,E為AC的中點,AD=6cm,BD=8cm,BC=16cm,則DE的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,點E是菱形ABCD內(nèi)一點,連結(jié)CE繞點C順時針旋轉(zhuǎn)110°,得到線段CF,連結(jié)BE,DF,若∠E=86°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OM、OA、ON是∠BOC內(nèi)的三條射線,ON平分∠AOC,OM平分∠BOC,且∠AOB+∠MON=120°,則∠MON=______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點O是AC的中點,AC=2AB,延長AB至G,使BG=AB,連接GO交BC于E,延長GO交AD于F,連接AE.
求證:(1)△ABC≌△AOG;
(2)猜測四邊形AECF的形狀并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線MN與直線PQ垂直相交于O,點A在直線PQ上運動,點B在直線MN上運動.
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點A、B在運動的過程中,∠AEB的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況;若不發(fā)生變化,試求出∠AEB的大小.
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點A、B在運動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.
(3)如圖3,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及延長線相交于E、F,在△AEF中,如果有一個角是另一個角的3倍,試求∠ABO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示,(每個小方格都是邊長為1個單位長度的正方形).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點B2,C2的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com