【題目】如圖,梯形中,,,點邊上,且,則的面積與四邊形的面積之比為________________

【答案】35

【解析】

連接AC,則△AEC與△BEC的面積的比等于14,再根據(jù)BC=3AD得到△ABC與△ACD的面積的比等于31,設△ACE的面積為a,則可以表示出△BEC與四邊形ABCD的面積,再求出比值即可.

解:如圖,連接AC,設△AEC的面積為a,

,

SBEC=4a,
SABC=a+4a=5a
BC=3AD,

SABC=3SACD=5a
SACD=a,
∴四邊形ABCD的面積=SABC+SACD=5a+a=a,

∴△BEC的面積:四邊形ABCD的面積=4aa =35

故答案為:35.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2019年在法國舉辦的女足世界杯,為人們奉獻了一場足球盛宴.某商場銷售一批足球文化衫,已知該文化衫的進價為每件40元,當售價為每件60元時,每個月可售出100件.根據(jù)市場行情,現(xiàn)決定漲價銷售,調査表明,每件商品的售價每上漲1元,每個月會少售出2件,設每件商品的售價為元,每個月的銷量為件.

1)求之間的函數(shù)關系式;

2)當每件商品的售價定為多少元時,每個月獲得利潤最大?最大月利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016黑龍江省齊齊哈爾市)如圖,平面直角坐標系內,小正方形網格的邊長為1個單位長度,ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C(0,0)

(1)畫出將ABC向上平移1個單位長度,再向右平移5個單位長度后得到的A1B1C1;

(2)畫出將ABC繞原點O順時針方向旋轉90°得到A2B2O;

(3)在x軸上存在一點P,滿足點PA1與點A2距離之和最小,請直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,鈍角ABC中,AB=AC,BC=2,O是邊AB上一點,以O為圓心,OB為半徑作⊙O,交邊AB于點D,交邊BC于點E,過E作⊙O的切線交邊AC于點F.

(1)求證:EFAC.

(2)連結DF,若∠ABC=30°,且DFBC,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在梯形中,的黃金分割點,________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有客房間供游客居住,當每間客房的定價為每天元時,客房恰好全部住滿;如果每間客房每天的定價每增加元,就會減少間客房出租.設每間客房每天的定價增加元,賓館出租的客房為間.求:

關于的函數(shù)關系式;

如果某天賓館客房收入元,那么這天每間客房的價格是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某報社為了解溫州市民對大范圍霧霾天氣的成因、影響以及應對措施的看法,做了一次抽樣調查,調查結果共分為四個等級:A.非常了解:B.比較了解:C.基本了解;D.不了解.根據(jù)調查統(tǒng)計結果,繪制了不完整的三種統(tǒng)計圖表.請結合統(tǒng)計圖表,回答下列問題:

對霧霾的了解程度

百分比

A

非常了解

5%

B

比較了解

m%

C

基本了解

45%

D

不了解

n%

1)本次參與調查的市民共有________人,m=________,n=________

2)統(tǒng)計圖中扇形D的圓心角是________.

3)某校準備開展關于霧霾的知識競賽,九(3)班鄭老師欲從2名男生和1名女生中任選2人參加比賽,求恰好選中“11的概率(要求列表或畫樹狀圖).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點E,F(xiàn)DC的中點,連結EF、BF,下列結論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結論的個數(shù)共有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+mx+m2的頂點為A,且經過點(3,﹣3.

1)求拋物線的解析式及頂點A的坐標;

2)將原拋物線沿射線OA方向進行平移得到新的拋物線,新拋物線與射線OA交于C,D兩點,如圖,請問:在拋物線平移的過程中,線段CD的長度是否為定值?若是,請求出這個定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案