【題目】如圖, 是⊙的直徑,點是⊙上一點, 與過點的切線垂直,垂足為點,直線與的延長線相交于點,弦平分∠,交于點,連接.
(1)求證: 平分∠;
(2)求證:PC=PF;
(3)若,AB=14,求線段的長.
【答案】(1)證明過程見解析;(2)證明過程見解析;(2)24.
【解析】試題分析:(1)根據(jù)切線以及AD⊥PD得出OC∥AD,得到∠ACO=∠DAC,然后根據(jù)OC=OA得出∠ACO=∠CAO,從而得到∠DAC=∠CAO,即角平分線;(2)根據(jù)題意得出∠PFC=∠PCF,得出PC=PF;(3)根據(jù)題意得出△PAC∽△PCB,根據(jù)tan∠ABC可得,設(shè)PC=4k,PB=3k,根據(jù)Rt△POC得出PO=3k+7,根據(jù)AB的長度得出OC的長度,根據(jù)得出k的值,然后求出PC的長度.
試題解析:(1)∵PD切⊙O于點C,∴OC⊥PD
又AD⊥PD,∴OC∥AD.∴∠ACO=∠DAC.
又OC=OA,∴∠ACO=∠CAO,
∴∠DAC=∠CAO,即AC平分∠DAB.
(2)∵AD⊥PD,∴∠DAC+∠ACD=90°.
又AB為⊙O的直徑,∴∠ACB=90°.
∴∠PCB+∠ACD=90°,
∴∠DAC=∠PCB.
又∠DAC=∠CAO,∴∠CAO=∠PCB.
∵CE平分∠ACB,∴∠ACF=∠BCF,
∴∠CAO+∠ACF=∠PCB+∠BCF,
∴∠PFC=∠PCF,
∴PC=PF
(3)∵∠PAC=∠PCB,∠P=∠P,
∴△PAC∽△PCB,
∴.
又tan∠ABC=,
∴,
∴
設(shè), ,則在Rt△POC中, ,
∵AB=14,
∴,
∵,
∴,
∴k=6 (k=0不合題意,舍去).
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=x與反比例函數(shù)y=的圖象交于A,B兩點,且點A的橫坐標為.在坐標軸上找一點C,直線AB上找一點D,在雙曲線y=找一點E,若以O,C,D,E為頂點的四邊形是有一組對角為60的菱形,那么符合條件點D的坐標為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在一個邊長為a的正方形木板上鋸掉一個邊長為b的正方形, 并把余下的部分沿虛線剪開拼成圖2的形狀.
(1)請用兩種方法表示陰影部分的面積
圖1得: ; 圖2得 ;
(2)由圖1與圖2 面積關(guān)系,可以得到一個等式: ;
(3)利用(2)中的等式,已知,且a+b=8,則a-b= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如下圖所示,且關(guān)于x的一元二次方程ax2+bx+c-m=0沒有實數(shù)根,有下列結(jié)論:①b2-4ac>0;②abc<0;③m>2.其中,正確結(jié)論的個數(shù)是
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了增強學生的身體素質(zhì),某校堅持長年的全員體育鍛煉,并定期進行體能測試,下面是將某班學生的立定跳遠成績(精確到0.01m),進行整理后,分成5組,畫了的頻率分布直方圖的部分,已知:從左到右4個小組的頻率分別是:0.05,0.15,0.30,0.35,第五小組的頻數(shù)是9.
(1)該班參加測試的人數(shù)是多少?
(2)補全頻率分布直方圖.
(3)若該成績在2.00m(含2.00)的為合格,問該班成績合格率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在直角坐標系中,A(﹣2,4)B(﹣4,2);A1、B1是A、B關(guān)于y軸的對稱點;
(1)請在圖中畫出A、B關(guān)于原點O的對稱點A2,B2(保留痕跡,不寫作法);并直接寫出A1、A2、B1、B2的坐標.
(2)試問:在x軸上是否存在一點C,使△A1B1C的周長最小,若存在求C點的坐標,若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知ABC為等邊三角形,點D、E分別在直線AB、BC上,且AD=BE.
(1)如圖1,若點D、E分別是AB、CB邊上的點,連接AE、CD交于點F,過點E作∠AEG=60°,使EG=AE,連接GD,則∠AFD= (填度數(shù));
(2)在(1)的條件下,猜想DG與CE存在什么關(guān)系,并證明;
(3)如圖2,若點D、E分別是BA、CB延長線上的點,(2)中結(jié)論是否仍然成立?請給出判斷并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張老師打算在小明和小白兩位同學之間選一位同學參加數(shù)學競賽,他收集了小明、小白近期10次數(shù)學考試成績,并繪制了折線統(tǒng)計圖(如圖所示)
項目 | 眾數(shù) | 中位數(shù) | 平均數(shù) | 方差 | 最高分 |
小明 | 85 | 85 | |||
小白 | 70,100 | 85 | 100 |
(1)根據(jù)折線統(tǒng)計圖,張老師繪制了不完整的統(tǒng)計表,請你補充完整統(tǒng)計表;
(2)你認為張老師會選擇哪位同學參加比賽?并說明你的理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】依法納稅是每個公民應(yīng)盡的義務(wù).新稅法規(guī)定:居民個人的綜合所得,以每一納稅月收入減去費用5000元以及專項扣除、專項附加扣除和依法確定的其它扣除后的余額,為個人應(yīng)納稅所得額.已知李先生某月的個人應(yīng)納稅所得額比張先生的多1500元,個人所得稅稅率相同情況下,李先生的個人所得稅稅額為76.5元,而張先生的個人所得稅稅額為31.5元.求李先生和張先生應(yīng)納稅所得額分別為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com