【題目】已知正方形ABCD的邊長為4,一個(gè)以點(diǎn)A為頂點(diǎn)的45°角繞點(diǎn)A旋轉(zhuǎn),角的兩邊分別與邊BC、DC的延長線交于點(diǎn)E、F,連接EF.設(shè)CE=a,CF=b.
(1)如圖1,當(dāng)∠EAF被對(duì)角線AC平分時(shí),求a、b的值;
(2)當(dāng)△AEF是直角三角形時(shí),求a、b的值.
【答案】
(1)
解:∵四邊形ABCD是正方形,
∴∠BCF=∠DCE=90°
∵AC是正方形ABCD的對(duì)角線,
∴∠ACB=∠ACD=45°,
∴∠ACF=∠ACE,
∵∠EAF被對(duì)角線AC平分,
∴∠CAF=∠CAE,
在△ACF和△ACE中, ,
∴△ACF≌△ACE,
∴CF=CE,
∵CE=a,CF=b,
∴a=b,
∵△ACF≌△ACE,
∴∠AEF=∠AFE,
∵∠EAF=45°,
∴∠AEF=∠AFE=67.5°,
∵CE=CF,∠ECF=90°,∠AEC=∠AFC=22.5°,
∵∠CAF=∠CAE=22.5°,
∴∠CAE=∠CEA,
∴CE=AC=4 ,即:a=b=4
(2)
解:當(dāng)△AEF是直角三角形時(shí),
①如圖所示:
∵∠AFE=90°,
∴∠AFD+∠CFE=90°,
∵∠CEF+∠CFE=90°,
∴∠AFD=∠CEF
∵∠AFE=90°,∠EAF=45°,
∴∠AEF=45°=∠EAF∴AF=EF,
在△ADF和△FCE中 ,
∴△ADF≌△FCE,
∴FC=AD=4,CE=DF=CD+FC=8,
∴a=8,b=4.
②當(dāng)∠AEF=90°時(shí),同①的方法得,CF=4,CE=8,
∴a=4,b=8
【解析】(1)先證明△ACF≌△ACE,從而得到CF=CE,然后再證明△ACE為等腰三角形,則CE=AC=4 ;(2)當(dāng)∠AFE=90°,可證明△ADF≌△FCE,則FC=AD=4,CE=DF=CD+FC=8,從而可求得a、b的值,同理當(dāng)∠AEF=90°時(shí),也可求得a、b的值.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形;①旋轉(zhuǎn)后對(duì)應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D、E在AB上,且D、E分別是AC、BC的垂直平分線上一點(diǎn).
(1)若△CDE的周長為4,求AB的長;
(2)若∠ACB=100°,求∠DCE的度數(shù);
(3)若∠ACB=a(90°<a<180°),則∠DCE=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,點(diǎn)G是BC延長線上一點(diǎn),連結(jié)AG,分別交BD、CD于點(diǎn)E、F,連結(jié)CE.
(1)求證:∠DAE=∠DCE;
(2)當(dāng)CE=2EF時(shí),EG與EF的等量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB⊥BC,DC⊥BC,∠1=∠2,可得到BE∥CF,說明過程如下,請(qǐng)?zhí)钌险f明的依據(jù):
因?yàn)锳B⊥BC,DC⊥BC,
所以∠ABC=90°,
∠BCD=90°(______________),
所以∠ABC=∠BCD.
又因?yàn)椤?=∠2,
所以∠EBC=∠FCB.
所以BE∥CF(______________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國已有大概3.68億人參與“螞蟻森林種樹”活動(dòng),3.68億用科學(xué)記數(shù)法表示為( )
A.3.68×108B.3.68×107C.0.368×109D.36.8×107
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句是命題的個(gè)數(shù)( )
(1)延長線段AB,(2)兩條直線相交,只有一交點(diǎn),(3)畫線段AB的中點(diǎn),(4)若|x|=2,則x=2,(5)角平分線是一條射線.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com