精英家教網(wǎng)如圖,在銳角三角形ABC中AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動(dòng)點(diǎn),則BM+MN的最小值是( 。
A、4B、5C、6D、2
分析:從已知條件結(jié)合圖形認(rèn)真思考,通過構(gòu)造全等三角形,利用三角形的三邊的關(guān)系確定線段和的最小值.
解答:解:如圖,在AC上截取AE=AN,連接BE,
精英家教網(wǎng)
∵∠BAC的平分線交BC于點(diǎn)D,
∴∠EAM=∠NAM,
在△AME與△AMN中,
AE=AN
∠EAM=∠NAM
AM=AM
,
∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE,
當(dāng)BE是點(diǎn)B到直線AC的距離時(shí),BE⊥AC,此時(shí)BM+MN有最小值,
∵AB=4
2
,∠BAC=45°,此時(shí)△ABE為等腰直角三角形,
∴BE=4,即BE取最小值為4,
∴BM+MN的最小值是4.
故選A.
點(diǎn)評(píng):本題考查了軸對(duì)稱的應(yīng)用.易錯(cuò)易混點(diǎn):解此題是受角平分線啟發(fā),能夠通過構(gòu)造全等三角形,把BM+MN進(jìn)行轉(zhuǎn)化,但是轉(zhuǎn)化后沒有辦法把兩個(gè)線段的和的最小值轉(zhuǎn)化為點(diǎn)到直線的距離而導(dǎo)致錯(cuò)誤.
規(guī)律與趨勢(shì):構(gòu)造法是初中解題中常用的一種方法,對(duì)于最值的求解是初中考查的重點(diǎn)也是難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)如圖,在銳角三角形ABC中,BC=12,sinA=
34
,求此三角形外接圓半徑.
(2)若BC=a、CA=b、AB=c,sinA、sinB、sinC分別表示三個(gè)銳角的正弦值,三角形的外接圓的半徑為R,反思(1)的解題過程,請(qǐng)你猜想并寫出一個(gè)結(jié)論.(不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在銳角三角形ABC中,AD⊥BC,AD=12,AC=13,BC=14.則AB=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在銳角三角形ABC中,AD⊥BC,AD=12cm,AB=13cm,BC=14cm,則AC的長(zhǎng)為( 。
A、12cmB、13cmC、14cmD、15cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在銳角三角形ABC中,AD、CE分別是邊BC、AB上的高,垂足分別是D、E,AD、CE相交于點(diǎn)O,若∠B=60°,則∠AOE的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在銳角三角形ABC中,BC=4
2
,∠ABC=45°,BD平分∠ABC,M、N分別是BD、BC上的動(dòng)點(diǎn),試求CM+MN的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案