【題目】(題文)如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連結(jié)AF,BF,EF,過(guò)點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè) =n.
(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.
【答案】(1)見(jiàn)解析;(2);(3)n=16或 8+4.
【解析】試題(1)因?yàn)?/span>GF⊥AF,由對(duì)稱易得AE=EF,則由直角三角形的兩個(gè)銳角的和為90度,且等邊對(duì)等角,即可證明E是AG的中點(diǎn);(2)可設(shè)AE=a,則AD=na,即需要用n或a表示出AB,由BE⊥AF和∠BAE==∠D=90°,可證明△ABE~△DAC , 則,因?yàn)?/span>AB=DC,且DA,AE已知表示出來(lái)了,所以可求出AB,即可解答;(3)求以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形時(shí)的n,需要分類討論,一般分三個(gè),∠FCG=90°,∠CFG=90°,∠CGF=90°;根據(jù)點(diǎn)F在矩形ABCD的內(nèi)部就可排除∠FCG=90°,所以就以∠CFG=90°和∠CGF=90°進(jìn)行分析解答.
試題解析:(1)證明:由對(duì)稱得AE=FE,∴∠EAF=∠EFA,∵GF⊥AE,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG.
(2)解:設(shè)AE=a,則AD=na,當(dāng)點(diǎn)F落在AC上時(shí)(如圖1),由對(duì)稱得BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,又∵∠BAE=∠D=90°,∴△ABE~△DAC ,∴
∵AB=DC,∴AB2=AD·AE=na·a=na2,∵AB>0,∴AB=,∴= =,∴=.
(3)解:設(shè)AE=a,則AD=na,由AD=4AB,則AB=.
當(dāng)點(diǎn)F落在線段BC上時(shí)(如圖2),EF=AE=AB=a,此時(shí),∴n=4,∴當(dāng)點(diǎn)F落在矩形外部時(shí),n>4.
∵點(diǎn)F落在矩形的內(nèi)部,點(diǎn)G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,若∠CFG=90°,則點(diǎn)F落在AC上,由(2)得=,∴n=16.
若∠CGF=90°(如圖3),則∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE~△DGC,∴ ,∴AB·DC=DG·AE,即.
解得 n=或n=<4(不合題意,舍去),∴當(dāng)n=16或 時(shí),以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是2和4,則△OAB的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,E為CD中點(diǎn),連接AE并延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:CF=AD.
(2)若AD=3,AB=8,當(dāng)BC為多少時(shí),點(diǎn)B在線段AF的垂直平分線上,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)P是直線上一點(diǎn),且,則點(diǎn)P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在A,B兩地之間有汽車站C站,客車由C站駛往A地,到達(dá)A地后立即原速駛往B地,貨車由B地駛往A地,兩車同時(shí)出發(fā),勻速行駛.圖2是客車、貨車離C站的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系圖象,請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:
(1)A,B兩地間的距離是 千米;請(qǐng)直接在圖2中的括號(hào)內(nèi)填上正確數(shù)字;
(2)求貨車由B地駛往A地過(guò)程中,y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)客、貨兩車出發(fā)多長(zhǎng)時(shí)間,距各自出發(fā)地的距離相等?直接寫出答案;
(4)客、貨兩車出發(fā)多長(zhǎng)時(shí)間,相距500千米?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計(jì)了這15人某月的加工零件數(shù)如下:
每人加工零件數(shù) | 540 | 450 | 300 | 240 | 210 | 120 |
人數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)寫出這15人該月加工零件的平均數(shù)、中位數(shù)和眾數(shù);
(2)生產(chǎn)部負(fù)責(zé)人要定出合理的每人每月生產(chǎn)定額,你認(rèn)為應(yīng)該定為多少件合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)P是對(duì)角線AC上的一點(diǎn),PE⊥AB,PF⊥AD,垂足分別為E、F,且PE=PF,平行四邊形ABCD是菱形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠C=90°,AC=8,BC=6,角平分線AD、BE相交于點(diǎn)O,則四邊形OECD的面積為( )
A.5B.C.D.8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com