【題目】已知O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.

(1)如圖①,若∠AOC=30°,求∠DOE的度數(shù);
(2)在圖①中,若∠AOC ,直接寫出∠DOE的度數(shù)(用含 的代數(shù)式表示);
(3)將圖①中的∠DOC繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖②的位置,探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說(shuō)明理由;

【答案】
(1)解:由已知得∠BOC=180°-∠AOC=150°,
又∠COD是直角,OE平分∠BOC ,
∴∠DOE=∠CODBOC=90°- ×150°=15°
(2)解:∠DOE= .
由(1)知∠DOE=∠CODBOC=90°,
∴∠DOE=90°- (180°-∠AOC)= AOC=
(3)解:∠AOC=2∠DOE. 理由如下:
∵∠COD是直角,OE平分∠BOC , ∴∠COE=∠BOE=90°-∠DOE ,
∴∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE),
∴∠AOC=2∠DOE.
【解析】(1)根據(jù)平角的定義得出∠BOC=180°-∠AOC=150°,根據(jù)角平分線的定義得出∠COE=∠COB=75° ,根據(jù)角的和差得出∠DOE=∠CODBOC=90°- ×150°=15° ;
(2)根據(jù)平角的定義得出∠BOC=180°-∠AOC=180°-α,根據(jù)角平分線的定義得出∠COE=∠COB=90°-α ,根據(jù)角的和差得出∠DOE=∠CODBOC=90°-(90°-α)=α ;
(3)∠AOC=2∠DOE. 理由如下:根據(jù)角平分線的定義得出∠COE=∠BOE=90°-∠DOE , 根據(jù)角的和差及等量代換∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE),從而得出結(jié)論∠AOC=2∠DOE. 。
【考點(diǎn)精析】關(guān)于本題考查的角的平分線和角的運(yùn)算,需要了解從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線;角之間可以進(jìn)行加減運(yùn)算;一個(gè)角可以用其他角的和或差來(lái)表示才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分線。

(1)求∠DAE的度數(shù);
(2)指出AD是哪幾個(gè)三角形的高。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一只跳蚤在第一象限及x軸、y軸上跳動(dòng),在第一秒鐘,它從原點(diǎn)跳動(dòng)到(0,1),然后接著按圖中箭頭所示方向跳動(dòng):即(0,0)→(0,1) →(1,1)→(1,0)→…,且每秒跳動(dòng)一個(gè)單位,那么第35秒時(shí)跳蚤所在位置的坐標(biāo)是(
A.(4,0)
B.(5,0)
C.(0,5)
D.(5,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】-6+0-10=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,Ab=6cm,BC=8cm,對(duì)角線AC,BD交于點(diǎn)0.點(diǎn)P從點(diǎn)A出發(fā),沿方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DC方向勻速運(yùn)動(dòng),速度為1cm/s;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).連接PO并延長(zhǎng),交BC于點(diǎn)E,過(guò)點(diǎn)Q作QF∥AC,交BD于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<6),解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),△AOP是等腰三角形?

(2)設(shè)五邊形OECQF的面積為S(cm2),試確定S與t的函數(shù)關(guān)系式;

(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使S五邊形S五邊形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;

(4)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使OD平分∠COP?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△A′B′C′關(guān)于直線l對(duì)稱,求證:△ABC≌△A′B′C′.若△ABC≌△A′B′C′,那么△ABC和△A′B′C′一定關(guān)于某條直線l對(duì)稱嗎?若一定請(qǐng)給出證明,若不一定請(qǐng)畫出反例圖。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.

(1)請(qǐng)直接寫出點(diǎn)A,C,D的坐標(biāo);

(2)如圖(1),在x軸上找一點(diǎn)E,使得CDE的周長(zhǎng)最小,求點(diǎn)E的坐標(biāo);

(3)如圖(2),F(xiàn)為直線AC上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得AFP為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上,A點(diǎn)和B點(diǎn)所表示的數(shù)分別為-2和1,若使A點(diǎn)表示的數(shù)是B點(diǎn)表示的數(shù)的3倍,應(yīng)把A點(diǎn)
A.向左移動(dòng)5個(gè)單位
B.向右移動(dòng)5個(gè)單位
C.向右移動(dòng)4個(gè)單位
D.向左移動(dòng)1個(gè)單位或向右移動(dòng)5個(gè)單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從數(shù)軸上看0表示的是(
A.最小的整數(shù)
B.最大的負(fù)數(shù)
C.最小的有理數(shù)
D.最小的非負(fù)數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案